Deep Learning Framework for Identifying Future Market Opportunities from Textual User Reviews

Jordan Kralev

Department of Systems and Control / Technical University of Sofia

Digital Computational Linguistics / Bulgarian Academy of Sciences
jkralev@ieee.org

ABSTRACT

The paper develops an application of design gap theory for identification of future market
segment growth and capitalization from a set of customer reviews for bought products from the
market in a given past period. To build a consumer feature space, an encoded-decoder network
with attention is trained over the textual reviews after they are pre-processed through
tokenization and embedding layers. The encodings for product reviews are used to train a
variational auto encoder network for representation of a product feature space. The sampling
capabilities of this network are extended with a function to look for innovative designs with
high consumer preferences, characterizing future opportunities in a given market segment.

The framework is demonstrated for processing of Amazon reviews in consumer electronics

segment.
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MATHEMATICAL FORMULATION
Language Transformer
Encoder
r=(ri,r2,73,...,7). Input text with tokens r and length L
ré™ = ET1(r;), Representation of tokens with embedding vectors

Te;mb . .
Tiriv1 = FrLsTm. rf (mff,z‘» ( 6}5' )) Forward LSTM layer with two inputs

emb N\ - token embedding
— @G , T
= ULSTM,ff (xff,z» ( Y )) - feedback vector
Tpit1 = FrsTr o (T v, €:) Feedback LSTM layer
ervi = GrsTa, o (Troi, €:)
Decoder
y=(y1,92,¥3- - -»yr)’ %™ = E"1(y;), Recovered input sequence from decoder
P W (x ( y§m )) Forward LSTM layer with two inputs
| y@m]fi - token embedding
di = GLSTM,D (5137:, ( ZCZ >> - context vector
= Z ;€ Context is weighted sum over encoded sequence
a; = o(s;) ai=(ai1,,ai2,---,a;,r), Weights vector is normalized to unit length
si; =V (Wie; + Waz;), Attention is function on input sequence
biased with current decoder state
pi = o (EW3(d;)) Probability over embedding vocabolary
Yi+1 = argmax j;(z). Maximum likelihood selection for decoder token
z
Training cost function
Jrp = Z E, (In(u Cross entropy between input and decoded sequence
Market Transformer
Xp = (er(r)),er(r?),... e (X)), Product category matrix from final encoder states
Xo = (X1, Xu2, -+ Xy N(0)); Client category matrix from final encoder states
Product feature space mean
Product feature space variance
sp X N (y,0) Sampling normal distribution with given threshold
p = Waec(sp) Mapping from feature space to input space

Training cost function

Imt = JMT,reg + JMT,ch + JMT,vae

IMTreg = Exc (Wu(Xp,ed?+ Wo(Xp,e)?). Regularization term for mean and variance

Imrch = En(=In(pm)), Cross entropy for predicted client preference for a product

N

JMTvae = Ex, (ep— &p), Difference between a input and decoded product vectors
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The following figures present the obtained results for 5 categories of Amazon reviews. The design

gap in a given market segment is predicted by looking for low probability designs through a

Monte-Carlo sampling of the underlying multivariate
probability distribution. The low probability products

are evaluated with respect to the consumer preference

probability function.

To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Observe positive
correlation between models scores and capitalization
growth, which means that the model correctly
predicts future capital allocation in the observed
sectors.

Also observe the product survival rate vs market
prediction, where again we see a positive correlation
with the model predictions. The product survive rate
is characteristic to how much a given product s in
demand during the observed period.

Correlation between market scores and actually
appearing new products in the observed domains is
again positive where the predicted design gap is
predicted. For a reference of the size of the market
segments, market capitalization at the starting year is
calculated.
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