
MODEL STRUCTURE

Deep Learning Framework for Identifying Future Market Opportunities from Textual User Reviews

Department of Systems and Control / Technical University of So�a
Digital Computational Linguistics / Bulgarian Academy of Sciences

jkralev@ieee.org

The paper develops an application of design gap theory for identi�cation of future market
segment growth and capitalization from a set of customer reviews for bought products from the
market in a given past period. To build a consumer feature space, an encoded-decoder network
with attention is trained over the textual reviews after they are pre-processed through
tokenization and embedding layers. The encodings for product reviews are used to train a
variational auto encoder network for representation of a product feature space. The sampling
capabilities of this network are extended with a function to look for innovative designs with
high consumer preferences, characterizing future opportunities in a given market segment.
The framework is demonstrated for processing of Amazon reviews in consumer electronics
segment.

Embedding Model
 (GloVe)

Amazon Product Reviews
 Dataset

month client_id textual review product_id category price

LSTM Encoder

encoded sequence

LSTM Feedback

word vectors

encoder state

LSTM Decoder

decoded sequence

 Linear Mapping
 to
Embedding Space

Embedding Model
 (reversed)

recovered plain text

decoded sequence

argmax

decoder state

Linear Mapping

Linear Mapping

Attention Weights

Σ
context vector

Product Category Dataset

Encoded
reviews for
product_id

Encoded
reviews for
client_id

Linear Mapping

Feature Mean Map Feature Variance Map

Multivariate
Gaussian
Sampling

Linear Mapping

Linear Mapping

Linear Mapping

softmax

feedback signal

+ bias

vocabolary weights

encoder �nal state

mean vector variance vector

sample feature vector

recovered encoder state

encoder �nal state

product preference score

probability threshold

Jordan Kralev

MODEL STRUCTURE

RESULTS

The following �gures present the obtained results for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by looking for low probability designs through a
Monte-Carlo sampling of the underlying multivariate
probability distribution. The low probability products
are evaluated with respect to the consumer preference
probability function.

To validate the correctness of such predictions,
we compare the observed market growth in the 5
segments from 2013 to 2018 year. Observe positive
correlation between models scores and capitalization
growth, which means that the model correctly
predicts future capital allocation in the observed
sectors.

Also observe the product survival rate vs market
prediction, where again we see a positive correlation
with the model predictions. The product survive rate
is characteristic to how much a given product is in
demand during the observed period.

Correlation between market scores and actually
appearing new products in the observed domains is
again positive where the predicted design gap is
predicted. For a reference of the size of the market
segments, market capitalization at the starting year is
calculated.

ABSTRACT

MATHEMATICAL FORMULATION

Language Transformer

Decoder

sures between triplets and for negative examples
for each relation, minimization is carried with a
statistical gradient method. The relation R is nu-
merically represented as a tuple of matrices acting
respectively on the left and right word embeddings.
Another part of the model is kernel density esti-
mator (KDE) where a number of kernel triplets
should be embedded close to triplets with at least
one identical element. Interestingly entities that are
close to each other in terms of 1-norm exhibit some
complex similarities like ” lawn tennis” is close
to other sports like ”baseball”, ”cricket”, etc. The
method represent quite well relations for proper
nouns, which is generally a difficult problem with
other DLNN models. (Bordes et al., 2013; Burnap
and Hauser, 2018a)

For the purpose of the current research, the
Global Vectors for Word Representation (GloVe)
embedding model is used (Pennington et al., 2014).
Its training is based on modeling one-step cor-
relation in the corpus or equivalently - the co-
occurrence of word pairs. Therefore, words with
higher probability of co-occurrence share closer
embedding vectors. The model is able to assign
vectors within same neighborhood to words with
similar meaning. Also the model reflects the words
with opposite meaning with more distanced in Eu-
clidean norm vectors.

2.2 Encoder

The purpose of the encoder is to transform the input
sequence of tokens into a sequence of ne dimen-
sional vectors reflecting the correlational structure
of the processed consumer review. The encoder is
implemented as an interconnection of an embed-
ding layer and a long short-term memory (LSTM)
node. This is a widely used RNN network used
in natural language models due to its capability to
conserve learned local correlations in the input se-
quence over long processing intervals, which is a
feature for common natural grammatical structures
such as gender and tense matching. The LSTM
structure is beneficial, especially for backpropa-
gation training, to minimize the vanishing of the
gradient for long sequences.

The input sequence r of tokens in a given con-
sumer review is represented with a vector

r = (r1, r2, r3, . . . , rL)
T (1)

of L elements ri ∈ [1, n] from a dictionary with
n words. If the number of elements in the actual

review are less than L, then a terminating token is
substituted for the missing elements. First, each
input token is mapped to its embedding vector

remb
i = ET1(ri), (2)

where 1(·) is a column vector of zeros with unit
only at position ri, hence it selects the embedding
vector remb

i ∈ Rm corresponding to the token ri.
The embedding vector is sent to a feedback in-
terconnection of two LSTM layers to obtain the
encoded sequence ei

xff,i+1 = FLSTM,ff

(
xff,i,

(
remb
i

efb,i

))

ei = GLSTM,ff

(
xff,i,

(
remb
i

efb,i

)) , (3)

where xff,i is the current state of the feed forward
(ff) LSTM node and efb,i is the current output of the
LSTM node in the feedback (fb), while FLSTM,ff

and GLSTM,ff are the state transition and output
mappings of the feed forward LSTM encoder node.
The respective output sequence of the encoder e is

e = (e1, e2, e3, . . . , eL)
T (4)

- a sequence of ne dimensional vectors with the
same length as the input sequence in correspon-
dence to the input tokens ri. The feedback LSTM
node action is expressed by

xfb,i+1 = FLSTM,fb (xfb,i, ei)
efb,i = GLSTM,fb (xfb,i, ei)

, (5)

where xfb,i is the current state of the feedback
LSTM node, efb,i is the feedback signal produced
from the layer, while FLSTM,fb and GLSTM,fb are
the state transition and output mappings. The feed-
back signal is concatenated with the input token
embedding, hence it acts as a model of an extracted
input sequence context. As a result, the encoded
sequence will model a cumulative extension of the
context with the incoming input tokens. The pur-
pose of training of the encoder is to ensure that
information content of the encoded vector is in-
creasing with each processed token.

I(ei+1) > I(ei) + I(remb
i+1|ei), (6)

where I(·) is information operator taken over the
current probability distribution of the encoded
state.

sures between triplets and for negative examples
for each relation, minimization is carried with a
statistical gradient method. The relation R is nu-
merically represented as a tuple of matrices acting
respectively on the left and right word embeddings.
Another part of the model is kernel density esti-
mator (KDE) where a number of kernel triplets
should be embedded close to triplets with at least
one identical element. Interestingly entities that are
close to each other in terms of 1-norm exhibit some
complex similarities like ” lawn tennis” is close
to other sports like ”baseball”, ”cricket”, etc. The
method represent quite well relations for proper
nouns, which is generally a difficult problem with
other DLNN models. (Bordes et al., 2013; Burnap
and Hauser, 2018a)

For the purpose of the current research, the
Global Vectors for Word Representation (GloVe)
embedding model is used (Pennington et al., 2014).
Its training is based on modeling one-step cor-
relation in the corpus or equivalently - the co-
occurrence of word pairs. Therefore, words with
higher probability of co-occurrence share closer
embedding vectors. The model is able to assign
vectors within same neighborhood to words with
similar meaning. Also the model reflects the words
with opposite meaning with more distanced in Eu-
clidean norm vectors.

2.2 Encoder

The purpose of the encoder is to transform the input
sequence of tokens into a sequence of ne dimen-
sional vectors reflecting the correlational structure
of the processed consumer review. The encoder is
implemented as an interconnection of an embed-
ding layer and a long short-term memory (LSTM)
node. This is a widely used RNN network used
in natural language models due to its capability to
conserve learned local correlations in the input se-
quence over long processing intervals, which is a
feature for common natural grammatical structures
such as gender and tense matching. The LSTM
structure is beneficial, especially for backpropa-
gation training, to minimize the vanishing of the
gradient for long sequences.

The input sequence r of tokens in a given con-
sumer review is represented with a vector

r = (r1, r2, r3, . . . , rL)
T (1)

of L elements ri ∈ [1, n] from a dictionary with
n words. If the number of elements in the actual

review are less than L, then a terminating token is
substituted for the missing elements. First, each
input token is mapped to its embedding vector

remb
i = ET1(ri), (2)

where 1(·) is a column vector of zeros with unit
only at position ri, hence it selects the embedding
vector remb

i ∈ Rm corresponding to the token ri.
The embedding vector is sent to a feedback in-
terconnection of two LSTM layers to obtain the
encoded sequence ei

xff,i+1 = FLSTM,ff

(
xff,i,

(
remb
i

efb,i

))

ei = GLSTM,ff

(
xff,i,

(
remb
i

efb,i

)) , (3)

where xff,i is the current state of the feed forward
(ff) LSTM node and efb,i is the current output of the
LSTM node in the feedback (fb), while FLSTM,ff

and GLSTM,ff are the state transition and output
mappings of the feed forward LSTM encoder node.
The respective output sequence of the encoder e is

e = (e1, e2, e3, . . . , eL)
T (4)

- a sequence of ne dimensional vectors with the
same length as the input sequence in correspon-
dence to the input tokens ri. The feedback LSTM
node action is expressed by

xfb,i+1 = FLSTM,fb (xfb,i, ei)
efb,i = GLSTM,fb (xfb,i, ei)

, (5)

where xfb,i is the current state of the feedback
LSTM node, efb,i is the feedback signal produced
from the layer, while FLSTM,fb and GLSTM,fb are
the state transition and output mappings. The feed-
back signal is concatenated with the input token
embedding, hence it acts as a model of an extracted
input sequence context. As a result, the encoded
sequence will model a cumulative extension of the
context with the incoming input tokens. The pur-
pose of training of the encoder is to ensure that
information content of the encoded vector is in-
creasing with each processed token.

I(ei+1) > I(ei) + I(remb
i+1|ei), (6)

where I(·) is information operator taken over the
current probability distribution of the encoded
state.

Input text with tokens r and length L

Representation of tokens with embedding vectors

sures between triplets and for negative examples
for each relation, minimization is carried with a
statistical gradient method. The relation R is nu-
merically represented as a tuple of matrices acting
respectively on the left and right word embeddings.
Another part of the model is kernel density esti-
mator (KDE) where a number of kernel triplets
should be embedded close to triplets with at least
one identical element. Interestingly entities that are
close to each other in terms of 1-norm exhibit some
complex similarities like ” lawn tennis” is close
to other sports like ”baseball”, ”cricket”, etc. The
method represent quite well relations for proper
nouns, which is generally a difficult problem with
other DLNN models. (Bordes et al., 2013; Burnap
and Hauser, 2018a)

For the purpose of the current research, the
Global Vectors for Word Representation (GloVe)
embedding model is used (Pennington et al., 2014).
Its training is based on modeling one-step cor-
relation in the corpus or equivalently - the co-
occurrence of word pairs. Therefore, words with
higher probability of co-occurrence share closer
embedding vectors. The model is able to assign
vectors within same neighborhood to words with
similar meaning. Also the model reflects the words
with opposite meaning with more distanced in Eu-
clidean norm vectors.

2.2 Encoder

The purpose of the encoder is to transform the input
sequence of tokens into a sequence of ne dimen-
sional vectors reflecting the correlational structure
of the processed consumer review. The encoder is
implemented as an interconnection of an embed-
ding layer and a long short-term memory (LSTM)
node. This is a widely used RNN network used
in natural language models due to its capability to
conserve learned local correlations in the input se-
quence over long processing intervals, which is a
feature for common natural grammatical structures
such as gender and tense matching. The LSTM
structure is beneficial, especially for backpropa-
gation training, to minimize the vanishing of the
gradient for long sequences.

The input sequence r of tokens in a given con-
sumer review is represented with a vector

r = (r1, r2, r3, . . . , rL)
T (1)

of L elements ri ∈ [1, n] from a dictionary with
n words. If the number of elements in the actual

review are less than L, then a terminating token is
substituted for the missing elements. First, each
input token is mapped to its embedding vector

remb
i = ET1(ri), (2)

where 1(·) is a column vector of zeros with unit
only at position ri, hence it selects the embedding
vector remb

i ∈ Rm corresponding to the token ri.
The embedding vector is sent to a feedback in-
terconnection of two LSTM layers to obtain the
encoded sequence ei

xff,i+1 = FLSTM,ff

(
xff,i,

(
remb
i

efb,i

))

ei = GLSTM,ff

(
xff,i,

(
remb
i

efb,i

)) , (3)

where xff,i is the current state of the feed forward
(ff) LSTM node and efb,i is the current output of the
LSTM node in the feedback (fb), while FLSTM,ff

and GLSTM,ff are the state transition and output
mappings of the feed forward LSTM encoder node.
The respective output sequence of the encoder e is

e = (e1, e2, e3, . . . , eL)
T (4)

- a sequence of ne dimensional vectors with the
same length as the input sequence in correspon-
dence to the input tokens ri. The feedback LSTM
node action is expressed by

xfb,i+1 = FLSTM,fb (xfb,i, ei)
efb,i = GLSTM,fb (xfb,i, ei)

, (5)

where xfb,i is the current state of the feedback
LSTM node, efb,i is the feedback signal produced
from the layer, while FLSTM,fb and GLSTM,fb are
the state transition and output mappings. The feed-
back signal is concatenated with the input token
embedding, hence it acts as a model of an extracted
input sequence context. As a result, the encoded
sequence will model a cumulative extension of the
context with the incoming input tokens. The pur-
pose of training of the encoder is to ensure that
information content of the encoded vector is in-
creasing with each processed token.

I(ei+1) > I(ei) + I(remb
i+1|ei), (6)

where I(·) is information operator taken over the
current probability distribution of the encoded
state.

sures between triplets and for negative examples
for each relation, minimization is carried with a
statistical gradient method. The relation R is nu-
merically represented as a tuple of matrices acting
respectively on the left and right word embeddings.
Another part of the model is kernel density esti-
mator (KDE) where a number of kernel triplets
should be embedded close to triplets with at least
one identical element. Interestingly entities that are
close to each other in terms of 1-norm exhibit some
complex similarities like ” lawn tennis” is close
to other sports like ”baseball”, ”cricket”, etc. The
method represent quite well relations for proper
nouns, which is generally a difficult problem with
other DLNN models. (Bordes et al., 2013; Burnap
and Hauser, 2018a)

For the purpose of the current research, the
Global Vectors for Word Representation (GloVe)
embedding model is used (Pennington et al., 2014).
Its training is based on modeling one-step cor-
relation in the corpus or equivalently - the co-
occurrence of word pairs. Therefore, words with
higher probability of co-occurrence share closer
embedding vectors. The model is able to assign
vectors within same neighborhood to words with
similar meaning. Also the model reflects the words
with opposite meaning with more distanced in Eu-
clidean norm vectors.

2.2 Encoder

The purpose of the encoder is to transform the input
sequence of tokens into a sequence of ne dimen-
sional vectors reflecting the correlational structure
of the processed consumer review. The encoder is
implemented as an interconnection of an embed-
ding layer and a long short-term memory (LSTM)
node. This is a widely used RNN network used
in natural language models due to its capability to
conserve learned local correlations in the input se-
quence over long processing intervals, which is a
feature for common natural grammatical structures
such as gender and tense matching. The LSTM
structure is beneficial, especially for backpropa-
gation training, to minimize the vanishing of the
gradient for long sequences.

The input sequence r of tokens in a given con-
sumer review is represented with a vector

r = (r1, r2, r3, . . . , rL)
T (1)

of L elements ri ∈ [1, n] from a dictionary with
n words. If the number of elements in the actual

review are less than L, then a terminating token is
substituted for the missing elements. First, each
input token is mapped to its embedding vector

remb
i = ET1(ri), (2)

where 1(·) is a column vector of zeros with unit
only at position ri, hence it selects the embedding
vector remb

i ∈ Rm corresponding to the token ri.
The embedding vector is sent to a feedback in-
terconnection of two LSTM layers to obtain the
encoded sequence ei

xff,i+1 = FLSTM,ff

(
xff,i,

(
remb
i

efb,i

))

ei = GLSTM,ff

(
xff,i,

(
remb
i

efb,i

)) , (3)

where xff,i is the current state of the feed forward
(ff) LSTM node and efb,i is the current output of the
LSTM node in the feedback (fb), while FLSTM,ff

and GLSTM,ff are the state transition and output
mappings of the feed forward LSTM encoder node.
The respective output sequence of the encoder e is

e = (e1, e2, e3, . . . , eL)
T (4)

- a sequence of ne dimensional vectors with the
same length as the input sequence in correspon-
dence to the input tokens ri. The feedback LSTM
node action is expressed by

xfb,i+1 = FLSTM,fb (xfb,i, ei)
efb,i = GLSTM,fb (xfb,i, ei)

, (5)

where xfb,i is the current state of the feedback
LSTM node, efb,i is the feedback signal produced
from the layer, while FLSTM,fb and GLSTM,fb are
the state transition and output mappings. The feed-
back signal is concatenated with the input token
embedding, hence it acts as a model of an extracted
input sequence context. As a result, the encoded
sequence will model a cumulative extension of the
context with the incoming input tokens. The pur-
pose of training of the encoder is to ensure that
information content of the encoded vector is in-
creasing with each processed token.

I(ei+1) > I(ei) + I(remb
i+1|ei), (6)

where I(·) is information operator taken over the
current probability distribution of the encoded
state.

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.3 Decoder
The decoder operates by continuously generating
tokens till either a terminating token is generated
or the maximal length of the sequence is reached.
In every step the decoder takes the token generated
in the previous step, the state vector of the decoder
from the previous step and the whole encoded se-
quence. Also, in every step, the decoder state vector
is combined with the encoded sequence using an
attention mechanism. As a result, a context vector
is produced which is combined with the embedding
of the previous decoded token, and consequently
fed to a LSTM node, which is initialized with the
decoder states from the previous step. The LSTM
node, in turn, produce a state vector consumed in
the next step, and an output vector - a basis for
token selection. The LSTM output is projected into
a distribution over the input dictionary, and on this
basis a maximum likelihood token is selected.

The purpose of the decoder is to generate an
output sequence with no more than L tokens, hence
it can be represented as a vector

y = (y1, y2, y3, . . . , yL)
T , (7)

where yi ∈ [0, n] represents a single token from
the input dictionary mapped to an integer interval.
Again, to represent the meaning of the token in
relation to other tokens in the dictionary an embed-
ding matrix E ∈ Rn×m is applied to produce an
m-dimensional vector

yemb
i = ET1(yi), (8)

where 1(·) is a column vector of zeros with unit
only at position yi, hence it selects the embedding
vector yemb

i ∈ Rm corresponding to the token yi.
The actual decoding is produced by an LSTM mem-
ory cell taking the embedding yemb

i together with
an m-dimensional context vector ci to produce

xi+1 = FLSTM,D

(
xi,

(
yemb
i

ci

))

di = GLSTM,D

(
xi,

(
yemb
i

ci

)) , (9)

where xi ∈ R2nd represents the current state of
the LSTM node with nd units in the forward and
backward channels, FLSTM,D and GLSTM,D are
state transition and output functions of the LSTM
node, and di ∈ Rnd is the output signal. The
output from the LSTM layer will be interpreted
as distribution over dictionary L. Hence, a dense

layer is trained to make a projection from LSTM nd

dimensional space into embedding m dimensional
space,

µi = σ (EW3(di)) , (10)

where σ(·) is a softmax operator translating the
n-dimensional vector into a probability distribution

µi : [0, n− 1] → (0, 1) (11)

over the input dictionary. The token at the position
i + 1 is then selected using maximal likelihood
criteria as

yi+1 = argmax
z

µi(z). (12)

The attention mechanism is used to gener-
ate the context vector ci into the embedding m-
dimensional space. Being in that space, the context
can be expressed in the words of input dictionary
with the help of scalar product. First, the previous
decoder LSTM state vector xi is projected into nd

dimensional LSTM output space through a linear
dense layer W2 ∈ Rnd×2nd . Similarly, every vec-
tor from the encoded sequence e with length L is
projected into decoder LSTM output space with an-
other linear mapping W1 ∈ Rnd×ne . The attention
distribution vector

ai = (ai1,, ai,2, . . . , ai,L), (13)

where ai,j ∈ (0, 1) is then produced with a softmax
operation

ai = σ(si) (14)

from the scores vector si with elements si,j ∈ R
calculated as

si,j = V (W1ej +W2xi), (15)

through a linear mapping V ∈ R1×nd acting over
the LSTM output space. As can be seen, the pro-
jection of current decoder state is used to bias the
projections of the encoded tokens. This allows
shifting of attention focus from one part of the in-
put sequence to another, as a function of current
decoder state. The attention values ai,j function as
weights over the elements of the encoded sequence
producing the context vector

ci =
L∑

j=1

ai,jej . (16)

2.4 Training
The training of the language transformer is per-
formed over a random sample of sequences from
the database of review texts between minimal and
maximal word length. First, each input word se-
quence r is encoded into a sequence of vectors e.
Then, each encoded vector is processed through the
decoder till a sequence y with the same length L as
input is produced. The loss function is calculated
as

JLT = −
L∑
i=1

Eri(ln(µi)), (17)

where −Eri(ln(·)) represents cross entropy opera-
tor. The training is performed for as many epochs
as we see a satisfactory generated sequences from
decoder over the train and validation sample.

3 Market Transformer

The market transformer is developed as a varia-
tional auto encoder, which acts as a model for the
probability distribution

p(xd|xc), (18)

where xd ∈ Rne is a vector of design features
and xc ∈ Rne is a vector of consumer features
for a particular market segment. The probability
distribution contains the information of preferred
designs by a particular consumer. Because the out-
put dimension of the review encoder can become
relatively large depending on the linguistic com-
plexity of the textual reviews, we assume an under-
lying low dimensional feature space for the prod-
ucts hd << ne and for the consumers hc << ne.

3.1 Dataset Preparation
For the customer review dataset, we use publicly
available data for Amazon Product Reviews avail-
able by product categories collected in 2023. The
whole dataset contains about 48 million products,
571 million reviews and 54 million consumers
(Hou et al., 2024). Additionally, a metadata is
provided for each item describing user rating, item
price, and other features. The dataset parsing is
organized by focusing on a finite number of market
subsegments identified by name. Data is processed
on a monthly basis from a fixed starting year to a
fixed ending year. The information is organized
into table with columns - review text, sampling
period, client identification, product identification,
price, product category. The review rating is used

to filter only reviews with 4 and 5 stars, which mark
the positive consumer preferences. Also, review
texts are filtered by minimal and maximal length to
keep consistency.

The review text is filtered by converting all
words to lower case and discarding symbols which
are not from the alphabet or digits. Each of the re-
views in the selected market segments is processed
through the encoder to produce the corresponding
encoded sequence from ne dimensional vectors. As
noted in section (), due to the feedback structure
of the encoder, the latest element in the encoded
sequence will be with the highest information con-
tent. Hence, we can take only the last element from
an encoded sequence, namely eL to characterize
the input sequence r.

The dataset information is in the form of triplets
(C,R, P), C standing for client, R standing for
textual review and P standing for product. Since
each textual review is encoded and represented with
a vector eL, we assume that the vector identifies
partly both - the customer who generated the re-
view and the product which receives such a review.
In this respect, each product can be uniquely iden-
tified by all final encoder states produced by its
reviews. Instead, on product level, the model is
trained to work with a category of products. Such a
generalization is justified to improve the statistical
properties of the model. The encoding vectors eL
of a product category P form the design space for
this category, denoted as

X̂P = (eL(r
1), eL(r

2), . . . eL(r
N(P))), (19)

for each review rl for a product in the category P.
The number of reviews N(P) may vary for differ-
ent product categories.

To each product category corresponds a cus-
tomer category. A customer u is characterized with
all the reviews he has generated collected in a ma-
trix from final encoder states as

X̂u = (eL(r
1), eL(r

2), . . . eL(r
N(u))), (20)

and the customer category contains all the charac-
terizations from all the customers

X̂C = (Xu,1, Xu,2, . . . , Xu,N(C)), (21)

with N(C) being the number of customers in a
category C.

2.4 Training
The training of the language transformer is per-
formed over a random sample of sequences from
the database of review texts between minimal and
maximal word length. First, each input word se-
quence r is encoded into a sequence of vectors e.
Then, each encoded vector is processed through the
decoder till a sequence y with the same length L as
input is produced. The loss function is calculated
as

JLT = −
L∑
i=1

Eri(ln(µi)), (17)

where −Eri(ln(·)) represents cross entropy opera-
tor. The training is performed for as many epochs
as we see a satisfactory generated sequences from
decoder over the train and validation sample.

3 Market Transformer

The market transformer is developed as a varia-
tional auto encoder, which acts as a model for the
probability distribution

p(xd|xc), (18)

where xd ∈ Rne is a vector of design features
and xc ∈ Rne is a vector of consumer features
for a particular market segment. The probability
distribution contains the information of preferred
designs by a particular consumer. Because the out-
put dimension of the review encoder can become
relatively large depending on the linguistic com-
plexity of the textual reviews, we assume an under-
lying low dimensional feature space for the prod-
ucts hd << ne and for the consumers hc << ne.

3.1 Dataset Preparation
For the customer review dataset, we use publicly
available data for Amazon Product Reviews avail-
able by product categories collected in 2023. The
whole dataset contains about 48 million products,
571 million reviews and 54 million consumers
(Hou et al., 2024). Additionally, a metadata is
provided for each item describing user rating, item
price, and other features. The dataset parsing is
organized by focusing on a finite number of market
subsegments identified by name. Data is processed
on a monthly basis from a fixed starting year to a
fixed ending year. The information is organized
into table with columns - review text, sampling
period, client identification, product identification,
price, product category. The review rating is used

to filter only reviews with 4 and 5 stars, which mark
the positive consumer preferences. Also, review
texts are filtered by minimal and maximal length to
keep consistency.

The review text is filtered by converting all
words to lower case and discarding symbols which
are not from the alphabet or digits. Each of the re-
views in the selected market segments is processed
through the encoder to produce the corresponding
encoded sequence from ne dimensional vectors. As
noted in section (), due to the feedback structure
of the encoder, the latest element in the encoded
sequence will be with the highest information con-
tent. Hence, we can take only the last element from
an encoded sequence, namely eL to characterize
the input sequence r.

The dataset information is in the form of triplets
(C,R, P), C standing for client, R standing for
textual review and P standing for product. Since
each textual review is encoded and represented with
a vector eL, we assume that the vector identifies
partly both - the customer who generated the re-
view and the product which receives such a review.
In this respect, each product can be uniquely iden-
tified by all final encoder states produced by its
reviews. Instead, on product level, the model is
trained to work with a category of products. Such a
generalization is justified to improve the statistical
properties of the model. The encoding vectors eL
of a product category P form the design space for
this category, denoted as

X̂P = (eL(r
1), eL(r

2), . . . eL(r
N(P))), (19)

for each review rl for a product in the category P.
The number of reviews N(P) may vary for differ-
ent product categories.

To each product category corresponds a cus-
tomer category. A customer u is characterized with
all the reviews he has generated collected in a ma-
trix from final encoder states as

X̂u = (eL(r
1), eL(r

2), . . . eL(r
N(u))), (20)

and the customer category contains all the charac-
terizations from all the customers

X̂C = (Xu,1, Xu,2, . . . , Xu,N(C)), (21)

with N(C) being the number of customers in a
category C.

2.4 Training
The training of the language transformer is per-
formed over a random sample of sequences from
the database of review texts between minimal and
maximal word length. First, each input word se-
quence r is encoded into a sequence of vectors e.
Then, each encoded vector is processed through the
decoder till a sequence y with the same length L as
input is produced. The loss function is calculated
as

JLT = −
L∑
i=1

Eri(ln(µi)), (17)

where −Eri(ln(·)) represents cross entropy opera-
tor. The training is performed for as many epochs
as we see a satisfactory generated sequences from
decoder over the train and validation sample.

3 Market Transformer

The market transformer is developed as a varia-
tional auto encoder, which acts as a model for the
probability distribution

p(xd|xc), (18)

where xd ∈ Rne is a vector of design features
and xc ∈ Rne is a vector of consumer features
for a particular market segment. The probability
distribution contains the information of preferred
designs by a particular consumer. Because the out-
put dimension of the review encoder can become
relatively large depending on the linguistic com-
plexity of the textual reviews, we assume an under-
lying low dimensional feature space for the prod-
ucts hd << ne and for the consumers hc << ne.

3.1 Dataset Preparation
For the customer review dataset, we use publicly
available data for Amazon Product Reviews avail-
able by product categories collected in 2023. The
whole dataset contains about 48 million products,
571 million reviews and 54 million consumers
(Hou et al., 2024). Additionally, a metadata is
provided for each item describing user rating, item
price, and other features. The dataset parsing is
organized by focusing on a finite number of market
subsegments identified by name. Data is processed
on a monthly basis from a fixed starting year to a
fixed ending year. The information is organized
into table with columns - review text, sampling
period, client identification, product identification,
price, product category. The review rating is used

to filter only reviews with 4 and 5 stars, which mark
the positive consumer preferences. Also, review
texts are filtered by minimal and maximal length to
keep consistency.

The review text is filtered by converting all
words to lower case and discarding symbols which
are not from the alphabet or digits. Each of the re-
views in the selected market segments is processed
through the encoder to produce the corresponding
encoded sequence from ne dimensional vectors. As
noted in section (), due to the feedback structure
of the encoder, the latest element in the encoded
sequence will be with the highest information con-
tent. Hence, we can take only the last element from
an encoded sequence, namely eL to characterize
the input sequence r.

The dataset information is in the form of triplets
(C,R, P), C standing for client, R standing for
textual review and P standing for product. Since
each textual review is encoded and represented with
a vector eL, we assume that the vector identifies
partly both - the customer who generated the re-
view and the product which receives such a review.
In this respect, each product can be uniquely iden-
tified by all final encoder states produced by its
reviews. Instead, on product level, the model is
trained to work with a category of products. Such a
generalization is justified to improve the statistical
properties of the model. The encoding vectors eL
of a product category P form the design space for
this category, denoted as

X̂P = (eL(r
1), eL(r

2), . . . eL(r
N(P))), (19)

for each review rl for a product in the category P.
The number of reviews N(P) may vary for differ-
ent product categories.

To each product category corresponds a cus-
tomer category. A customer u is characterized with
all the reviews he has generated collected in a ma-
trix from final encoder states as

X̂u = (eL(r
1), eL(r

2), . . . eL(r
N(u))), (20)

and the customer category contains all the charac-
terizations from all the customers

X̂C = (Xu,1, Xu,2, . . . , Xu,N(C)), (21)

with N(C) being the number of customers in a
category C.

3.2 Consumer Utility
The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature space XH . The product
characterized by a matrix XP is processed through
a dense linear layer W4 into small dimensional
representation as

YP = W4HP . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimension hd are obtained by two layers with rec-
tified linear activation as

µp = Wµ(yP), yP ∈ XP (23)

and
σp = Wσ(yP). (24)

This estimates a multivariate normal distribution
with parameters N(µ, σ). After this a sampler layer
generates a random sample from this disribution in
the hd dimensional space as

sp ∝ N(µ, σ) (25)

The random sample is sent to a dense decoder layer
composed of linear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training
The training of the market transformer is with re-
spect to 3 objectives - minimize the difference be-
tween a given product vector ep and the decoded
vector êp

JMT,vae = EXP
(ep − êp), (27)

minimize the cross entropy predicted by the model
for a particular consumer pM (ep, ec) with respect
to the ground truth triplet π of whether this cus-
tomer actually bought the item

JMT,ch = Eπ(−ln(pM)), (28)

and a regularization term of not allowing underly-
ing mean and variance vectors to grow unbounded

JMT,reg = EXC
(Wµ(XP , ec)

2 +Wσ(XP , ec)
2).

(29)
The three objective are combined in the cost

JMT = JMT,reg + JMT,ch + JMT,vae (30)

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|xc). Hence in case of low probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.

To validate the correctness of such predictions,
we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure 1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with the model predictions. The product
survive rate is characteristic to how much a given
product is in demand during the observed period.
In Figure 3 we examine correlation between market
scores and actually appearing new products in the
observed domains. Here also a positive correlation
with the predicted design gap is observed.

For a reference of the size of the observed market
segments, we calculate their market capitalization
at the starting year in Figure 4.

3.2 Consumer Utility
The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature space XH . The product
characterized by a matrix XP is processed through
a dense linear layer W4 into small dimensional
representation as

YP = W4HP . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimension hd are obtained by two layers with rec-
tified linear activation as

µp = Wµ(yP), yP ∈ XP (23)

and
σp = Wσ(yP). (24)

This estimates a multivariate normal distribution
with parameters N(µ, σ). After this a sampler layer
generates a random sample from this disribution in
the hd dimensional space as

sp ∝ N(µ, σ) (25)

The random sample is sent to a dense decoder layer
composed of linear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training
The training of the market transformer is with re-
spect to 3 objectives - minimize the difference be-
tween a given product vector ep and the decoded
vector êp

JMT,vae = EXP
(ep − êp), (27)

minimize the cross entropy predicted by the model
for a particular consumer pM (ep, ec) with respect
to the ground truth triplet π of whether this cus-
tomer actually bought the item

JMT,ch = Eπ(−ln(pM)), (28)

and a regularization term of not allowing underly-
ing mean and variance vectors to grow unbounded

JMT,reg = EXC
(Wµ(XP , ec)

2 +Wσ(XP , ec)
2).

(29)
The three objective are combined in the cost

JMT = JMT,reg + JMT,ch + JMT,vae (30)

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|xc). Hence in case of low probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.

To validate the correctness of such predictions,
we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure 1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with the model predictions. The product
survive rate is characteristic to how much a given
product is in demand during the observed period.
In Figure 3 we examine correlation between market
scores and actually appearing new products in the
observed domains. Here also a positive correlation
with the predicted design gap is observed.

For a reference of the size of the observed market
segments, we calculate their market capitalization
at the starting year in Figure 4.

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in

hd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in
thehd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model
for a particular consumerpM (ep, ec) with respect
to the ground truth tripletπ of whether this cus-
tomer actually bought the item

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with themodel predictions. The product

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in
thehd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model
for a particular consumerpM (ep, ec) with respect

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in
thehd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model
for a particular consumerpM (ep, ec) with respect
to the ground truth tripletπ of whether this cus-
tomer actually bought the item

J MT,ch = E π (− ln (pM)) , (28)

and a regularization term of not allowing underly-
ing mean and variance vectors to grow unbounded

MT,reg = E X C (Wµ (X P , ec)2 + Wσ (X P , ec)2) .
(29)

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with themodel predictions. The product
survive rate is characteristic to how much a given
product is in demand during the observed period.
In Figure 3 we examine correlation between market
scores and actually appearing new products in the
observed domains. Here also a positive correlation
with the predicted design gap is observed.

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in
thehd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model
for a particular consumerpM (ep, ec) with respect
to the ground truth tripletπ of whether this cus-
tomer actually bought the item

J MT,ch = E π (− ln (pM)) , (28)

and a regularization term of not allowing underly-
ing mean and variance vectors to grow unbounded

J MT,reg = E X C (Wµ (X P , ec)2 + Wσ (X P , ec)2) .
(29)

The three objective are combined in the cost

J MT = J MT,reg + J MT,ch + J MT,vae (30)

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with themodel predictions. The product
survive rate is characteristic to how much a given
product is in demand during the observed period.
In Figure 3 we examine correlation between market
scores and actually appearing new products in the
observed domains. Here also a positive correlation
with the predicted design gap is observed.

For a reference of the size of the observed market
segments, we calculate their market capitalization
at the starting year in Figure4.

3.2 Consumer Utility

The consumer utility model characterizes the in-
teraction between product category and consumer
category with a multivariate probability distribu-
tion in a product feature spaceX H . The product
characterized by a matrixX P is processed through
a dense linear layerW4 into small dimensional
representation as

YP = W4H P . (22)

Then the multivariate mean and multivariate stan-
dard deviations of the underlying feature space with
dimensionhd are obtained by two layers with rec-
tified linear activation as

µp = Wµ (yP) , yP � X P (23)

and
σp = Wσ (yP) . (24)

This estimates a multivariate normal distribution
with parametersN (µ, σ) . After this a sampler layer
generates a random sample from this disribution in
thehd dimensional space as

sp � N (µ, σ) (25)

The random sample is sent to a dense decoder layer
composed o�inear hidden layer and output layer
with ne units to produce a esimate of the encoded
product

ŷP = Wdec(sp) (26)

3.3 Training

The training of the market transformer is with re-
spect to 3 objectives - minimize the di�erence be-
tween a given product vectorep and the decoded
vector êp

J MT,vae = E X P (ep − êp) , (27)

minimize the cross entropy predicted by the model
for a particular consumerpM (ep, ec) with respect
to the ground truth tripletπ of whether this cus-
tomer actually bought the item

J MT,ch = E π (− ln (pM)) , (28)

and a regularization term of not allowing underly-
ing mean and variance vectors to grow unbounded

J MT,reg = E X C (Wµ (X P , ec)2 + Wσ (X P , ec)2) .
(29)

The three objective are combined in the cost

J MT = J MT,reg + J MT,ch + J MT,vae (30)

Figure 1: Model Prediction vs Market Capitalization
Growth

4 Results

The following figures present the obtained results
for 5 categories of Amazon reviews. The design
gap in a given market segment is predicted by look-
ing for low probability designs (i.e. not yet discov-
ered) through a Monte-Carlo sampling of the un-
derlying multivariate probability distribution. The
low probability products are evaluated with respect
to the consumer preference probability function
pM (xd|x c) . Hence in case o�ow probability de-
sign, which is highly preferable by customers we
can conclude that in a given market segment we
have unrealized potential for innovation.
To validate the correctness of such predictions,

we compare the observed market growth in the 5
segments from 2013 to 2018 year. Figure1 gives
information about observed market capitalization
growth and predicted design gap in the sectors. We
observe positive correlation between models scores
and capitalization growth, which means that the
model correctly predicts future capital allocation
in the observed sectors.

In Figure 2 we observe the product survival rate
vs market prediction, where again we see a positive
correlation with themodel predictions. The product
survive rate is characteristic to how much a given
product is in demand during the observed period.
In Figure 3 we examine correlation between market
scores and actually appearing new products in the
observed domains. Here also a positive correlation
with the predicted design gap is observed.

For a reference of the size of the observed market
segments, we calculate their market capitalization
at the starting year in Figure4.

The design gap models allow the prediction of consum-
er preference for an ”unknown and not existing prod-
ucts”. The prediction cannot exactly tell what will be
these future products. The model output is a bounded
subset of the design space or feature space, which will
be favored by the customers. Such bounded subset can
be contrasted with the unbounded set of all possible
future designs.

Forward LSTM layer with two inputs
- token embedding
- feedback vector

Feedback LSTM layer

Encoder

Forward LSTM layer with two inputs
- token embedding
- context vector

Context is weighted sum over encoded sequence

Weights vector is normalized to unit length

Attention is function on input sequence
biased with current decoder state

Recovered input sequence from decoder

Probability over embedding vocabolary

Maximum likelihood selection for decoder token

Training cost function

Cross entropy between input and decoded sequence

Market Transformer

Training cost function

Product category matrix from �nal encoder states

Client category matrix from �nal encoder states

Product feature space mean

Product feature space variance

Sampling normal distribution with given threshold

Mapping from feature space to input space

Di�erence between a input and decoded product vectors

Cross entropy for predicted client preference for a product

Regularization term for mean and variance

