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Introduction
Let ξ be an arbitrary non-negative irrational real number.

The pair (f , g) of unary total functions in N computes ξ if for all
n ∈ N, ∣∣∣∣ f (n)

g(n) + 1
− ξ

∣∣∣∣ < 1

n + 1
.

It is well-known that ξ has an expansion as a continued fraction

ξ = a0 +
1

a1 + 1
a2+

1

...

,

where a0 ≥ 0 is the integral part of ξ and for i ≥ 1,
ai is non-zero natural number.
Let F be a class of total functions in N.
The number ξ is F − computable if there exists a pair (f , g) ∈ F2,
which computes ξ.
The number ξ has continued fraction in F , if the function λn.an
belongs to F .
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Introduction

The main question that is of interest to us is to compare the
complexity of these two representations of ξ.

For example, let R be the class of all recursive functions.

Theorem 1
The number ξ is R-computable if and only if its continued fraction
is in R.

But if we take the class PR of primitive recursive functions, this
equivalence is no longer true. As Lehman showed in [4], there exist
PR-computable real numbers, whose continued fraction is not in
PR. We will give a concrete example of such real number.
The classes we are interested in are the third (E2) and the fourth
(E3) level of Grzegorczyk’s hierarchy of PR.
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Grzegorczyk’s classes E2 and E3

We remind the definition of these classes.

Definition 2
The class E2 is the smallest class of total functions in N, which
contains the constant 0, the successor function λx .x + 1, the
projections λx1 . . . xn.xi (i , n ∈ N, 1 ≤ i ≤ n), the addition function
and the multiplication function and is closed under substitution
and bounded primitive recursion.
The definition of the class E3 is nearly the same, we must only add
the exponential function λx .2x to the inital functions.
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Basic facts about continued fractions

We will also need some basic facts about continued fractions.

We have ξ = a0 + 1
a1+

1

...

. More precisely, ξ = limn→∞ bn, where

bn = a0 + 1
a1+

1

...+ 1
an

is the n-th convergent of ξ.

We consider two sequences p and q, defined by

I p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1, n = 0, 1, . . .

I q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1, n = 0, 1, . . .

It is true that bn = pn
qn

for all n ∈ N.
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A generalization
In my master’s thesis [1] the following theorem is proven

Theorem 3
If ξ has continued fraction in E2, then ξ is E2-computable.

The proof utilizes a function r , defined by r(n, t) = min(qn, t + 1)
and the crucial step is to prove that r ∈ E2, which is done by the
following representation (similar to the definitions of p and q):

r(0, t) = min(q0, t + 1), r(1, t) = min(q1, t + 1),

r(n + 2, t) = min(an+2.r(n + 1, t) + r(n, t), t + 1), n, t ∈ N. (1)

A simple, but important observation, which allows an essential
generalization of the theorem is the following: the number an+2 in
equality (1) can be changed to min(an+2, t + 1) without effect on
its correctness. So, to conclude that r ∈ E2, it is sufficient to have

λnt.min(an+2, t + 1) ∈ E2 (2)

(not the stronger λn.an+2 ∈ E2).
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A generalization

For example, (2) is true, if the graph of λn.an is ∆0-definable (that
is, definable in arithmetic by a formula with bounded quantifiers).

We obtain the following

Theorem 4
If the graph of λn.an is ∆0-definable, then ξ is E2-computable.

We apply theorem 4 for ξA = A(0, 0) + 1
A(1,1)+ 1

A(2,2)+ 1

...

, where A is

Ackermann’s function.
It is well-known that λx .A(x , x) is not primitive recursive and it is
also true that its graph is ∆0-definable (see [2]).
Hence, the number ξA is E2-computable, but its continued fraction
is not primitive recursive, let alone in E2.
We conclude that the converse of theorem 3 is not true.
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A partial converse

We still hope that combining E2-computability with some other
natural property will give at least a partial converse of theorem 3.

In [4], Lehman defines such a condition: recursive irrationality.
Let F be a class of total functions in N.
The number ξ is F − irrational if there exists unary function
v ∈ F , such that for all natural m and n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

Theorem 5 (Lehman)

The number ξ has continued fraction in PR if and only if ξ is
PR-computable and PR-irrational.

By a close scrutiny of the proof in [4] of this theorem we obtain
the following

Theorem 6
If the number ξ is E2-computable and E2-irrational, then ξ has
continued fraction in E3.
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Applications

Finally, we will apply theorem 6 to obtain some interesting facts.

Definition 7
Let R be the set of all positive real numbers r , such that the
inequality ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qr

has at most finitely many solutions (p, q), where p and q > 0 are
integers. The infimum of R is called the irrationality measure of ξ.

Lemma 8
If ξ has finite irrationality measure, then ξ is E2-irrational.



Applications

1. Results from [5] imply that all real algebraic numbers are
E2-computable. Moreover, a famous theorem of
Thue-Siegel-Roth asserts that the irrationality measure of any
real algebraic irrational is exactly 2.

From theorem 6 and
lemma 8 it follows that the continued fraction of any real
algebraic irrational number is in E3.

2. A result from [6] is the fact that π is E2-computable. The
irrationality measure of π is finite, even less than 8.0161 by
[3]. From theorem 6 and lemma 8 it follows that the
continued fraction of π is also in E3.
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