Complexity of the Continued Fractions of Some Subrecursive Real Numbers

Ivan Georgiev¹

Prof. Assen Zlatarov University, Burgas, Bulgaria

Computability in Europe 2012

22 June 2012

¹This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0022/19.03.2012

Let ξ be an arbitrary non-negative irrational real number.

Let ξ be an arbitrary non-negative irrational real number. The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}.$$

Let ξ be an arbitrary non-negative irrational real number.

The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}$$

It is well-known that ξ has an expansion as a *continued fraction*

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}},$$

where $a_0 \ge 0$ is the integral part of ξ and for $i \ge 1$, a_i is non-zero natural number.

Let ξ be an arbitrary non-negative irrational real number.

The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right| < \frac{1}{n+1}$$

It is well-known that ξ has an expansion as a *continued fraction*

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}},$$

where $a_0 \ge 0$ is the integral part of ξ and for $i \ge 1$, a_i is non-zero natural number. Let \mathcal{F} be a class of total functions in \mathbb{N} .

Let ξ be an arbitrary non-negative irrational real number.

The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}$$

It is well-known that ξ has an expansion as a *continued fraction*

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}},$$

where $a_0 \ge 0$ is the integral part of ξ and for $i \ge 1$, a_i is non-zero natural number. Let \mathcal{F} be a class of total functions in \mathbb{N} . The number ξ is \mathcal{F} – *computable* if there exists a pair $(f,g) \in \mathcal{F}^2$, which computes ξ .

Let ξ be an arbitrary non-negative irrational real number.

The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right| < \frac{1}{n+1}$$

It is well-known that ξ has an expansion as a *continued fraction*

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}},$$

where $a_0 \ge 0$ is the integral part of ξ and for $i \ge 1$,

 a_i is non-zero natural number.

Let \mathcal{F} be a class of total functions in \mathbb{N} .

The number ξ is \mathcal{F} – *computable* if there exists a pair $(f,g) \in \mathcal{F}^2$, which computes ξ .

The number ξ has continued fraction in \mathcal{F} , if the function $\lambda n.a_n$ belongs to \mathcal{F} .

Let ξ be an arbitrary non-negative irrational real number.

The pair (f,g) of unary total functions in \mathbb{N} *computes* ξ if for all $n \in \mathbb{N}$,

$$\left|\frac{f(n)}{g(n)+1}-\xi\right| < \frac{1}{n+1}$$

It is well-known that ξ has an expansion as a *continued fraction*

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}},$$

where $a_0 \ge 0$ is the integral part of ξ and for $i \ge 1$,

 a_i is non-zero natural number.

Let \mathcal{F} be a class of total functions in \mathbb{N} .

The number ξ is \mathcal{F} – *computable* if there exists a pair $(f,g) \in \mathcal{F}^2$, which computes ξ .

The number ξ has continued fraction in \mathcal{F} , if the function $\lambda n.a_n$ belongs to \mathcal{F} .

The main question that is of interest to us is to compare the complexity of these two representations of ξ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The main question that is of interest to us is to compare the complexity of these two representations of ξ . For example, let \mathcal{R} be the class of all recursive functions.

Theorem 1

The number ξ is \mathcal{R} -computable if and only if its continued fraction is in \mathcal{R} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The main question that is of interest to us is to compare the complexity of these two representations of ξ . For example, let \mathcal{R} be the class of all recursive functions.

Theorem 1

The number ξ is \mathcal{R} -computable if and only if its continued fraction is in \mathcal{R} .

But if we take the class \mathcal{PR} of primitive recursive functions, this equivalence is no longer true. As Lehman showed in [4], there exist \mathcal{PR} -computable real numbers, whose continued fraction is not in \mathcal{PR} . We will give a concrete example of such real number.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The main question that is of interest to us is to compare the complexity of these two representations of ξ . For example, let \mathcal{R} be the class of all recursive functions.

Theorem 1

The number ξ is \mathcal{R} -computable if and only if its continued fraction is in \mathcal{R} .

But if we take the class \mathcal{PR} of primitive recursive functions, this equivalence is no longer true. As Lehman showed in [4], there exist \mathcal{PR} -computable real numbers, whose continued fraction is not in \mathcal{PR} . We will give a concrete example of such real number. The classes we are interested in are the third (\mathcal{E}^2) and the fourth (\mathcal{E}^3) level of Grzegorczyk's hierarchy of \mathcal{PR} .

Grzegorczyk's classes \mathcal{E}^2 and \mathcal{E}^3

We remind the definition of these classes.

We remind the definition of these classes.

Definition 2

The class \mathcal{E}^2 is the smallest class of total functions in \mathbb{N} , which contains the constant 0, the successor function $\lambda x.x + 1$, the projections $\lambda x_1 \dots x_n.x_i$ $(i, n \in \mathbb{N}, 1 \le i \le n)$, the addition function and the multiplication function and is closed under substitution and bounded primitive recursion.

We remind the definition of these classes.

Definition 2

The class \mathcal{E}^2 is the smallest class of total functions in \mathbb{N} , which contains the constant 0, the successor function $\lambda x.x + 1$, the projections $\lambda x_1 \dots x_n.x_i$ $(i, n \in \mathbb{N}, 1 \le i \le n)$, the addition function and the multiplication function and is closed under substitution and bounded primitive recursion.

The definition of the class \mathcal{E}^3 is nearly the same, we must only add the exponential function $\lambda x.2^x$ to the initial functions.

We will also need some basic facts about continued fractions.

We will also need some basic facts about continued fractions. We have $\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_1}}$. More precisely, $\xi = \lim_{n \to \infty} b_n$, where $b_n = a_0 + \frac{1}{a_1 + \frac{1}{a_1}}$ is the *n*-th *convergent* of ξ .

We will also need some basic facts about continued fractions. We have $\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_1}}$. More precisely, $\xi = \lim_{n \to \infty} b_n$, where

$$b_n = a_0 + \frac{1}{a_1 + \frac{1}{\cdots + \frac{1}{a_n}}}$$
 is the *n*-th *convergent* of ξ .
 $\cdots + \frac{1}{a_n}$
We consider two sequences *p* and *q*, defined by

▶
$$p_{-1} = 1$$
, $p_0 = a_0$, $p_{n+1} = a_{n+1}p_n + p_{n-1}$, $n = 0, 1, ...$
▶ $q_{-1} = 0$, $q_0 = 1$, $q_{n+1} = a_{n+1}q_n + q_{n-1}$, $n = 0, 1, ...$

We will also need some basic facts about continued fractions. We have $\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_1}}$. More precisely, $\xi = \lim_{n \to \infty} b_n$, where

$$b_n = a_0 + \frac{1}{a_1 + \frac{1}{\cdots + \frac{1}{a_n}}}$$
 is the *n*-th convergent of ξ .

We consider two sequences p and q, defined by

▶
$$p_{-1} = 1$$
, $p_0 = a_0$, $p_{n+1} = a_{n+1}p_n + p_{n-1}$, $n = 0, 1, ...$

▶
$$q_{-1} = 0$$
, $q_0 = 1$, $q_{n+1} = a_{n+1}q_n + q_{n-1}$, $n = 0, 1, ...$

It is true that $b_n = \frac{p_n}{q_n}$ for all $n \in \mathbb{N}$.

In my master's thesis [1] the following theorem is proven

Theorem 3

If ξ has continued fraction in \mathcal{E}^2 , then ξ is \mathcal{E}^2 -computable.

In my master's thesis $\left[1\right]$ the following theorem is proven

Theorem 3

r

If ξ has continued fraction in \mathcal{E}^2 , then ξ is \mathcal{E}^2 -computable.

The proof utilizes a function r, defined by $r(n, t) = min(q_n, t + 1)$ and the crucial step is to prove that $r \in \mathcal{E}^2$, which is done by the following representation (similar to the definitions of p and q):

$$r(0,t) = \min(q_0,t+1), r(1,t) = \min(q_1,t+1),$$

$$r(n+2,t) = \min(a_{n+2},r(n+1,t)+r(n,t),t+1), n, t \in \mathbb{N}. \quad (1)$$

In my master's thesis $\left[1\right]$ the following theorem is proven

Theorem 3

If ξ has continued fraction in \mathcal{E}^2 , then ξ is \mathcal{E}^2 -computable.

The proof utilizes a function r, defined by $r(n, t) = min(q_n, t + 1)$ and the crucial step is to prove that $r \in \mathcal{E}^2$, which is done by the following representation (similar to the definitions of p and q):

$$r(0, t) = min(q_0, t+1), r(1, t) = min(q_1, t+1),$$

$$r(n+2,t) = min(a_{n+2}.r(n+1,t) + r(n,t), t+1), n, t \in \mathbb{N}.$$
 (1)

A simple, but important observation, which allows an essential generalization of the theorem is the following: the number a_{n+2} in equality (1) can be changed to $min(a_{n+2}, t+1)$ without effect on its correctness. So, to conclude that $r \in \mathcal{E}^2$, it is sufficient to have

$$\lambda nt.min(a_{n+2},t+1) \in \mathcal{E}^2$$
(2)

(not the stronger $\lambda n.a_{n+2} \in \mathcal{E}^2$).

▲□▶▲圖▶▲≧▶▲≧▶ ≧ め�?

For example, (2) is true, if the graph of $\lambda n.a_n$ is Δ_0 -definable (that is, definable in arithmetic by a formula with bounded quantifiers).

For example, (2) is true, if the graph of $\lambda n.a_n$ is Δ_0 -definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4

If the graph of $\lambda n.a_n$ is Δ_0 -definable, then ξ is \mathcal{E}^2 -computable. We apply theorem 4 for $\xi_A = A(0,0) + \frac{1}{A(1,1) + \frac{1}{A(2,2) + \frac{1}{-1}}}$, where A is

۰.

Ackermann's function.

For example, (2) is true, if the graph of $\lambda n.a_n$ is Δ_0 -definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4

If the graph of $\lambda n.a_n$ is Δ_0 -definable, then ξ is \mathcal{E}^2 -computable. We apply theorem 4 for $\xi_A = A(0,0) + \frac{1}{A(1,1) + \frac{1}{A(2,2) + \frac{1}{-1}}}$, where A is

۰.

Ackermann's function.

It is well-known that $\lambda x.A(x,x)$ is not primitive recursive and it is also true that its graph is Δ_0 -definable (see [2]).

For example, (2) is true, if the graph of $\lambda n.a_n$ is Δ_0 -definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4

If the graph of $\lambda n.a_n$ is Δ_0 -definable, then ξ is \mathcal{E}^2 -computable. We apply theorem 4 for $\xi_A = A(0,0) + \frac{1}{A(1,1) + \frac{1}{A(2,2) + \frac{1}{2}}}$, where A is

Ackermann's function.

It is well-known that $\lambda x.A(x,x)$ is not primitive recursive and it is also true that its graph is Δ_0 -definable (see [2]). Hence, the number ξ_A is \mathcal{E}^2 -computable, but its continued fraction

is not primitive recursive, let alone in \mathcal{E}^2 .

For example, (2) is true, if the graph of $\lambda n.a_n$ is Δ_0 -definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4

If the graph of $\lambda n.a_n$ is Δ_0 -definable, then ξ is \mathcal{E}^2 -computable. We apply theorem 4 for $\xi_A = A(0,0) + \frac{1}{A(1,1) + \frac{1}{A(2,2) + \frac{1}{2}}}$, where A is

Ackermann's function.

It is well-known that $\lambda x.A(x,x)$ is not primitive recursive and it is also true that its graph is Δ_0 -definable (see [2]). Hence, the number ξ_A is \mathcal{E}^2 -computable, but its continued fraction

Hence, the number ξ_A is \mathcal{E}^- -computable, but its continued fraction is not primitive recursive, let alone in \mathcal{E}^2 .

We conclude that the converse of theorem 3 is not true.

A partial converse

We still hope that combining \mathcal{E}^2 -computability with some other natural property will give at least a partial converse of theorem 3.

A partial converse

We still hope that combining \mathcal{E}^2 -computability with some other natural property will give at least a partial converse of theorem 3. In [4], Lehman defines such a condition: *recursive irrationality*. Let \mathcal{F} be a class of total functions in \mathbb{N} .

The number ξ is \mathcal{F} – *irrational* if there exists unary function $v \in \mathcal{F}$, such that for all natural m and n > 0, $\left|\xi - \frac{m}{n}\right| > \frac{1}{v(n)}$.

Theorem 5 (Lehman)

The number ξ has continued fraction in \mathcal{PR} if and only if ξ is \mathcal{PR} -computable and \mathcal{PR} -irrational.

A partial converse

We still hope that combining \mathcal{E}^2 -computability with some other natural property will give at least a partial converse of theorem 3. In [4], Lehman defines such a condition: *recursive irrationality*. Let \mathcal{F} be a class of total functions in \mathbb{N} .

The number ξ is \mathcal{F} – *irrational* if there exists unary function $v \in \mathcal{F}$, such that for all natural m and n > 0, $\left|\xi - \frac{m}{n}\right| > \frac{1}{v(n)}$.

Theorem 5 (Lehman)

The number ξ has continued fraction in \mathcal{PR} if and only if ξ is \mathcal{PR} -computable and \mathcal{PR} -irrational.

By a close scrutiny of the proof in $\left[4\right]$ of this theorem we obtain the following

Theorem 6

If the number ξ is \mathcal{E}^2 -computable and \mathcal{E}^2 -irrational, then ξ has continued fraction in \mathcal{E}^3 .

Finally, we will apply theorem 6 to obtain some interesting facts.

Definition 7

Let R be the set of all positive real numbers r, such that the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{q^r}$$

has at most finitely many solutions (p, q), where p and q > 0 are integers. The infimum of R is called the irrationality measure of ξ .

Lemma 8

If ξ has finite irrationality measure, then ξ is \mathcal{E}^2 -irrational.

 Results from [5] imply that all real algebraic numbers are *E*²-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2.

 Results from [5] imply that all real algebraic numbers are *E*²-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in *E*³.

- Results from [5] imply that all real algebraic numbers are *E*²-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in *E*³.
- 2. A result from [6] is the fact that π is \mathcal{E}^2 -computable. The irrationality measure of π is finite, even less than 8.0161 by [3].

- Results from [5] imply that all real algebraic numbers are *E*²-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in *E*³.
- A result from [6] is the fact that π is *E*²-computable. The irrationality measure of π is finite, even less than 8.0161 by [3]. From theorem 6 and lemma 8 it follows that the continued fraction of π is also in *E*³.

References

- Georgiev, I., Subrecursive computability in analysis, MSc Thesis, Sofia University, 2009. http://www.fmi.uni-sofia. bg/fmi/logic/theses/georgiev.htm
- Calude, C., Super-exponential non primitive recursive, but rudimentary, Inform. Proc. Letters 25 (1987), 311-315.
- Hata, M., Improvement in the irrationality measures of π and π^2 , Proc. Japan Acad. Ser. A. Math. Sci. 68 (1992), 283-286.
- Lehman, R. S., On primitive recursive real numbers, Fundamenta mathematicae, vol. 49 (1961), 105-118.
- Skordev, D., Computability of real numbers by using a given class of functions in the set of natural numbers, Math. Log. Quart., vol. 48 (2002), suppl. 1, 91-106.
- Skordev, D., *E*²-computability of *e*, π and other famous constants, Electronic Notes in Theoretical Computer Science, vol. 14 (2008), 861-875.

Thank you for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>