Complexity of the Continued Fractions of Some Subrecursive Real Numbers

Ivan Georgiev ${ }^{1}$

Prof. Assen Zlatarov University, Burgas, Bulgaria

Computability in Europe 2012

22 June 2012
${ }^{1}$ This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0022/19.03.2012

Introduction

Let ξ be an arbitrary non-negative irrational real number.

Introduction

Let ξ be an arbitrary non-negative irrational real number. The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

Introduction

Let ξ be an arbitrary non-negative irrational real number. The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

It is well-known that ξ has an expansion as a continued fraction

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

where $a_{0} \geq 0$ is the integral part of ξ and for $i \geq 1$, a_{i} is non-zero natural number.

Introduction

Let ξ be an arbitrary non-negative irrational real number.
The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

It is well-known that ξ has an expansion as a continued fraction

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}},
$$

where $a_{0} \geq 0$ is the integral part of ξ and for $i \geq 1$, a_{i} is non-zero natural number.
Let \mathcal{F} be a class of total functions in \mathbb{N}.

Introduction

Let ξ be an arbitrary non-negative irrational real number.
The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

It is well-known that ξ has an expansion as a continued fraction

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}},
$$

where $a_{0} \geq 0$ is the integral part of ξ and for $i \geq 1$, a_{i} is non-zero natural number.
Let \mathcal{F} be a class of total functions in \mathbb{N}.
The number ξ is \mathcal{F} - computable if there exists a pair $(f, g) \in \mathcal{F}^{2}$, which computes ξ.

Introduction

Let ξ be an arbitrary non-negative irrational real number.
The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

It is well-known that ξ has an expansion as a continued fraction

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}},
$$

where $a_{0} \geq 0$ is the integral part of ξ and for $i \geq 1$,
a_{i} is non-zero natural number.
Let \mathcal{F} be a class of total functions in \mathbb{N}.
The number ξ is \mathcal{F} - computable if there exists a pair $(f, g) \in \mathcal{F}^{2}$, which computes ξ.
The number ξ has continued fraction in \mathcal{F}, if the function $\lambda n . a_{n}$ belongs to \mathcal{F}.

Introduction

Let ξ be an arbitrary non-negative irrational real number.
The pair (f, g) of unary total functions in \mathbb{N} computes ξ if for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)}{g(n)+1}-\xi\right|<\frac{1}{n+1}
$$

It is well-known that ξ has an expansion as a continued fraction

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}},
$$

where $a_{0} \geq 0$ is the integral part of ξ and for $i \geq 1$,
a_{i} is non-zero natural number.
Let \mathcal{F} be a class of total functions in \mathbb{N}.
The number ξ is \mathcal{F} - computable if there exists a pair $(f, g) \in \mathcal{F}^{2}$, which computes ξ.
The number ξ has continued fraction in \mathcal{F}, if the function $\lambda n . a_{n}$ belongs to \mathcal{F}.

Introduction

The main question that is of interest to us is to compare the complexity of these two representations of ξ.

Introduction

The main question that is of interest to us is to compare the complexity of these two representations of ξ. For example, let \mathcal{R} be the class of all recursive functions.

Theorem 1
The number ξ is \mathcal{R}-computable if and only if its continued fraction is in \mathcal{R}.

Introduction

The main question that is of interest to us is to compare the complexity of these two representations of ξ.
For example, let \mathcal{R} be the class of all recursive functions.
Theorem 1
The number ξ is \mathcal{R}-computable if and only if its continued fraction is in \mathcal{R}.
But if we take the class $\mathcal{P} \mathcal{R}$ of primitive recursive functions, this equivalence is no longer true. As Lehman showed in [4], there exist $\mathcal{P} \mathcal{R}$-computable real numbers, whose continued fraction is not in $\mathcal{P} \mathcal{R}$. We will give a concrete example of such real number.

Introduction

The main question that is of interest to us is to compare the complexity of these two representations of ξ.
For example, let \mathcal{R} be the class of all recursive functions.
Theorem 1
The number ξ is \mathcal{R}-computable if and only if its continued fraction is in \mathcal{R}.
But if we take the class $\mathcal{P} \mathcal{R}$ of primitive recursive functions, this equivalence is no longer true. As Lehman showed in [4], there exist $\mathcal{P} \mathcal{R}$-computable real numbers, whose continued fraction is not in $\mathcal{P} \mathcal{R}$. We will give a concrete example of such real number. The classes we are interested in are the third $\left(\mathcal{E}^{2}\right)$ and the fourth $\left(\mathcal{E}^{3}\right)$ level of Grzegorczyk's hierarchy of $\mathcal{P} \mathcal{R}$.

Grzegorczyk's classes \mathcal{E}^{2} and \mathcal{E}^{3}

We remind the definition of these classes.

Grzegorczyk's classes \mathcal{E}^{2} and \mathcal{E}^{3}

We remind the definition of these classes.

Definition 2

The class \mathcal{E}^{2} is the smallest class of total functions in \mathbb{N}, which contains the constant 0 , the successor function $\lambda x \cdot x+1$, the projections $\lambda x_{1} \ldots x_{n} \cdot x_{i}(i, n \in \mathbb{N}, 1 \leq i \leq n)$, the addition function and the multiplication function and is closed under substitution and bounded primitive recursion.

Grzegorczyk's classes \mathcal{E}^{2} and \mathcal{E}^{3}

We remind the definition of these classes.

Definition 2

The class \mathcal{E}^{2} is the smallest class of total functions in \mathbb{N}, which contains the constant 0 , the successor function $\lambda x \cdot x+1$, the projections $\lambda x_{1} \ldots x_{n} \cdot x_{i}(i, n \in \mathbb{N}, 1 \leq i \leq n)$, the addition function and the multiplication function and is closed under substitution and bounded primitive recursion.
The definition of the class \mathcal{E}^{3} is nearly the same, we must only add the exponential function $\lambda x .2^{x}$ to the inital functions.

Basic facts about continued fractions

We will also need some basic facts about continued fractions.

Basic facts about continued fractions

We will also need some basic facts about continued fractions. We have $\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{n}}$. More precisely, $\xi=\lim _{n \rightarrow \infty} b_{n}$, where
$b_{n}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}$ is the n-th convergent of ξ.

Basic facts about continued fractions

We will also need some basic facts about continued fractions. We have $\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{l}}$. More precisely, $\xi=\lim _{n \rightarrow \infty} b_{n}$, where
$b_{n}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$ is the n-th convergent of ξ.
We consider two sequences p and q, defined by

- $p_{-1}=1, p_{0}=a_{0}, p_{n+1}=a_{n+1} p_{n}+p_{n-1}, n=0,1, \ldots$
- $q_{-1}=0, q_{0}=1, q_{n+1}=a_{n+1} q_{n}+q_{n-1}, n=0,1, \ldots$

Basic facts about continued fractions

We will also need some basic facts about continued fractions. We have $\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{l}}$. More precisely, $\xi=\lim _{n \rightarrow \infty} b_{n}$, where
$b_{n}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$ is the n-th convergent of ξ.
We consider two sequences p and q, defined by

- $p_{-1}=1, p_{0}=a_{0}, p_{n+1}=a_{n+1} p_{n}+p_{n-1}, n=0,1, \ldots$
- $q_{-1}=0, q_{0}=1, q_{n+1}=a_{n+1} q_{n}+q_{n-1}, n=0,1, \ldots$

It is true that $b_{n}=\frac{p_{n}}{q_{n}}$ for all $n \in \mathbb{N}$.

A generalization

In my master's thesis [1] the following theorem is proven
Theorem 3
If ξ has continued fraction in \mathcal{E}^{2}, then ξ is \mathcal{E}^{2}-computable.

A generalization

In my master's thesis [1] the following theorem is proven
Theorem 3
If ξ has continued fraction in \mathcal{E}^{2}, then ξ is \mathcal{E}^{2}-computable.
The proof utilizes a function r, defined by $r(n, t)=\min \left(q_{n}, t+1\right)$ and the crucial step is to prove that $r \in \mathcal{E}^{2}$, which is done by the following representation (similar to the definitions of p and q):

$$
\begin{gather*}
r(0, t)=\min \left(q_{0}, t+1\right), r(1, t)=\min \left(q_{1}, t+1\right), \\
r(n+2, t)=\min \left(a_{n+2} \cdot r(n+1, t)+r(n, t), t+1\right), n, t \in \mathbb{N} . \tag{1}
\end{gather*}
$$

A generalization

In my master's thesis [1] the following theorem is proven
Theorem 3
If ξ has continued fraction in \mathcal{E}^{2}, then ξ is \mathcal{E}^{2}-computable.
The proof utilizes a function r, defined by $r(n, t)=\min \left(q_{n}, t+1\right)$ and the crucial step is to prove that $r \in \mathcal{E}^{2}$, which is done by the following representation (similar to the definitions of p and q):

$$
\begin{gather*}
r(0, t)=\min \left(q_{0}, t+1\right), r(1, t)=\min \left(q_{1}, t+1\right), \\
r(n+2, t)=\min \left(a_{n+2} \cdot r(n+1, t)+r(n, t), t+1\right), n, t \in \mathbb{N} . \tag{1}
\end{gather*}
$$

A simple, but important observation, which allows an essential generalization of the theorem is the following: the number a_{n+2} in equality (1) can be changed to $\min \left(a_{n+2}, t+1\right)$ without effect on its correctness. So, to conclude that $r \in \mathcal{E}^{2}$, it is sufficient to have

$$
\begin{equation*}
\lambda n t . \min \left(a_{n+2}, t+1\right) \in \mathcal{E}^{2} \tag{2}
\end{equation*}
$$

(not the stronger $\lambda n . a_{n+2} \in \mathcal{E}^{2}$).

A generalization

For example, (2) is true, if the graph of $\lambda n . a_{n}$ is Δ_{0}-definable (that is, definable in arithmetic by a formula with bounded quantifiers).

A generalization

For example, (2) is true, if the graph of $\lambda n . a_{n}$ is Δ_{0}-definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4
If the graph of $\lambda n . a_{n}$ is Δ_{0}-definable, then ξ is \mathcal{E}^{2}-computable.
We apply theorem 4 for $\xi_{A}=A(0,0)+\frac{1}{A(1,1)+\frac{1}{A(2,2)+\underline{1}}}$, where A is
Ackermann's function.

A generalization

For example, (2) is true, if the graph of $\lambda n . a_{n}$ is Δ_{0}-definable (that is, definable in arithmetic by a formula with bounded quantifiers). We obtain the following

Theorem 4
If the graph of $\lambda n . a_{n}$ is Δ_{0}-definable, then ξ is \mathcal{E}^{2}-computable.
We apply theorem 4 for $\xi_{A}=A(0,0)+\frac{1}{A(1,1)+\frac{1}{A(2,2)+1}}$, where A is
Ackermann's function.
It is well-known that $\lambda x \cdot A(x, x)$ is not primitive recursive and it is also true that its graph is Δ_{0}-definable (see [2]).

A generalization

For example, (2) is true, if the graph of $\lambda n . a_{n}$ is Δ_{0}-definable (that is, definable in arithmetic by a formula with bounded quantifiers).
We obtain the following
Theorem 4
If the graph of $\lambda n . a_{n}$ is Δ_{0}-definable, then ξ is \mathcal{E}^{2}-computable.
We apply theorem 4 for $\xi_{A}=A(0,0)+\frac{1}{A(1,1)+\frac{1}{A(2,2)+\frac{1}{}}}$, where A is
Ackermann's function.
It is well-known that $\lambda x \cdot A(x, x)$ is not primitive recursive and it is also true that its graph is Δ_{0}-definable (see [2]). Hence, the number ξ_{A} is \mathcal{E}^{2}-computable, but its continued fraction is not primitive recursive, let alone in \mathcal{E}^{2}.

A generalization

For example, (2) is true, if the graph of $\lambda n . a_{n}$ is Δ_{0}-definable (that is, definable in arithmetic by a formula with bounded quantifiers).
We obtain the following
Theorem 4
If the graph of $\lambda n . a_{n}$ is Δ_{0}-definable, then ξ is \mathcal{E}^{2}-computable.
We apply theorem 4 for $\xi_{A}=A(0,0)+\frac{1}{A(1,1)+\frac{1}{A(2,2)+1}}$, where A is
Ackermann's function.
It is well-known that $\lambda x \cdot A(x, x)$ is not primitive recursive and it is also true that its graph is Δ_{0}-definable (see [2]). Hence, the number ξ_{A} is \mathcal{E}^{2}-computable, but its continued fraction is not primitive recursive, let alone in \mathcal{E}^{2}.
We conclude that the converse of theorem 3 is not true.

A partial converse

We still hope that combining \mathcal{E}^{2}-computability with some other natural property will give at least a partial converse of theorem 3 .

A partial converse

We still hope that combining \mathcal{E}^{2}-computability with some other natural property will give at least a partial converse of theorem 3 . In [4], Lehman defines such a condition: recursive irrationality. Let \mathcal{F} be a class of total functions in \mathbb{N}.
The number ξ is \mathcal{F} - irrational if there exists unary function $v \in \mathcal{F}$, such that for all natural m and $n>0,\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}$.
Theorem 5 (Lehman)
The number ξ has continued fraction in $\mathcal{P \mathcal { R }}$ if and only if ξ is $\mathcal{P} \mathcal{R}$-computable and $\mathcal{P} \mathcal{R}$-irrational.

A partial converse

We still hope that combining \mathcal{E}^{2}-computability with some other natural property will give at least a partial converse of theorem 3 . In [4], Lehman defines such a condition: recursive irrationality. Let \mathcal{F} be a class of total functions in \mathbb{N}.
The number ξ is \mathcal{F} - irrational if there exists unary function $v \in \mathcal{F}$, such that for all natural m and $n>0,\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}$.
Theorem 5 (Lehman)
The number ξ has continued fraction in $\mathcal{P \mathcal { R }}$ if and only if ξ is $\mathcal{P} \mathcal{R}$-computable and $\mathcal{P} \mathcal{R}$-irrational.
By a close scrutiny of the proof in [4] of this theorem we obtain the following
Theorem 6
If the number ξ is \mathcal{E}^{2}-computable and \mathcal{E}^{2}-irrational, then ξ has continued fraction in \mathcal{E}^{3}.

Applications

Finally, we will apply theorem 6 to obtain some interesting facts.
Definition 7
Let R be the set of all positive real numbers r, such that the inequality

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{r}}
$$

has at most finitely many solutions (p, q), where p and $q>0$ are integers. The infimum of R is called the irrationality measure of ξ.

Lemma 8
If ξ has finite irrationality measure, then ξ is \mathcal{E}^{2}-irrational.

Applications

1. Results from [5] imply that all real algebraic numbers are \mathcal{E}^{2}-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2.

Applications

1. Results from [5] imply that all real algebraic numbers are \mathcal{E}^{2}-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in \mathcal{E}^{3}.

Applications

1. Results from [5] imply that all real algebraic numbers are \mathcal{E}^{2}-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in \mathcal{E}^{3}.
2. A result from [6] is the fact that π is \mathcal{E}^{2}-computable. The irrationality measure of π is finite, even less than 8.0161 by [3].

Applications

1. Results from [5] imply that all real algebraic numbers are \mathcal{E}^{2}-computable. Moreover, a famous theorem of Thue-Siegel-Roth asserts that the irrationality measure of any real algebraic irrational is exactly 2. From theorem 6 and lemma 8 it follows that the continued fraction of any real algebraic irrational number is in \mathcal{E}^{3}.
2. A result from [6] is the fact that π is \mathcal{E}^{2}-computable. The irrationality measure of π is finite, even less than 8.0161 by [3]. From theorem 6 and lemma 8 it follows that the continued fraction of π is also in \mathcal{E}^{3}.

References

屢 Georgiev，I．，Subrecursive computability in analysis，MSc Thesis，Sofia University，2009．http：／／www．fmi．uni－sofia． bg／fmi／logic／theses／georgiev．htm
目 Calude，C．，Super－exponential non primitive recursive，but rudimentary，Inform．Proc．Letters 25 （1987），311－315．
埥 Hata，M．，Improvement in the irrationality measures of π and π^{2} ，Proc．Japan Acad．Ser．A．Math．Sci． 68 （1992），283－286．

围 Lehman，R．S．，On primitive recursive real numbers， Fundamenta mathematicae，vol． 49 （1961），105－118．
围 Skordev，D．，Computability of real numbers by using a given class of functions in the set of natural numbers，Math．Log． Quart．，vol． 48 （2002），suppl．1，91－106．

目 Skordev，D．， \mathcal{E}^{2}－computability of e, π and other famous constants，Electronic Notes in Theoretical Computer Science， vol． 14 （2008），861－875．

Thank you for your attention!

