Computing Real Functions with Rudimentary Operators

Ivan Georgiev¹

Prof. Assen Zlatarov University, Burgas, Bulgaria

Computability and Complexity in Analysis 2012

25 June 2012

¹This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0022/19.03.2012

For natural $m \ge 1$, the set $\{a|a : \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m>1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} .

For natural $m \ge 1$, the set $\{a|a: \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m\ge 1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} . For non-zero *m* and *n*, the mappings $\Phi: \mathcal{T}_1^n \to \mathcal{T}_m$ will be called (n,m) – operators. An operator is an (n,m)-operator for some *m*, *n*. The set of all operators will be denoted by \mathbb{O} .

For natural $m \ge 1$, the set $\{a|a: \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m\ge 1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} . For non-zero *m* and *n*, the mappings $\Phi: \mathcal{T}_1^n \to \mathcal{T}_m$ will be called (n,m) – operators. An operator is an (n,m)-operator for some *m*, *n*. The set of all operators will be denoted by \mathbb{O} . The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^2 \subseteq \mathcal{T}$;

For natural $m \ge 1$, the set $\{a|a: \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m\ge 1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} . For non-zero *m* and *n*, the mappings $\Phi: \mathcal{T}_1^n \to \mathcal{T}_m$ will be called (n,m) – operators. An operator is an (n,m)-operator for some *m*, *n*. The set of all operators will be denoted by \mathbb{O} . The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^2 \subseteq \mathcal{T}$;

2. define the classes of operators $\mathbb{RO} \subseteq \mathbb{O}$ and $\mathbb{MSO} \subseteq \mathbb{O}$;

For natural $m \ge 1$, the set $\{a|a: \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m\ge 1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} . For non-zero *m* and *n*, the mappings $\Phi: \mathcal{T}_1^n \to \mathcal{T}_m$ will be called (n,m) – operators. An operator is an (n,m)-operator for some *m*, *n*. The set of all operators will be denoted by \mathbb{O} . The aims of this presentation are the following:

- 1. define the class of functions $\mathcal{M}^2 \subseteq \mathcal{T}$;
- 2. define the classes of operators $\mathbb{RO} \subseteq \mathbb{O}$ and $\mathbb{MSO} \subseteq \mathbb{O}$;

3. show that MSO is a proper subclass of \mathbb{RO} ;

For natural $m \ge 1$, the set $\{a|a: \mathbb{N}^m \to \mathbb{N}\}$ will be denoted by \mathcal{T}_m . The union $\bigcup_{m\ge 1}^{\infty} \mathcal{T}^m$ will be denoted by \mathcal{T} . For non-zero *m* and *n*, the mappings $\Phi: \mathcal{T}_1^n \to \mathcal{T}_m$ will be called (n,m) – operators. An operator is an (n,m)-operator for some *m*, *n*. The set of all operators will be denoted by \mathbb{O} . The aims of this presentation are the following:

- 1. define the class of functions $\mathcal{M}^2 \subseteq \mathcal{T}$;
- 2. define the classes of operators $\mathbb{RO} \subseteq \mathbb{O}$ and $\mathbb{MSO} \subseteq \mathbb{O}$;
- 3. show that MSO is a proper subclass of \mathbb{RO} ;
- compare the computational power of these classes with respect to real functions by applying a general characterization theorem of D. Skordev in [1].

Let
$$a \in \mathcal{T}_{m+1}$$
. We define $b \in \mathcal{T}_{m+1}$ by

$$b(\overline{x}, y) = \begin{cases} z, & \text{if } z \le y, a(\overline{x}, z) = 0 \text{ and } \forall t < z[a(\overline{x}, t) \neq 0] \\ y + 1, & \text{if } \forall t \le y[a(\overline{x}, t) \neq 0] \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote $b(\overline{x}, y) = \mu_{z \le y}[a(\overline{x}, z) = 0]$ and we say that *b* is produced from *a* by *limited minimum operation*.

Let
$$a \in \mathcal{T}_{m+1}$$
. We define $b \in \mathcal{T}_{m+1}$ by

$$b(\overline{x}, y) = \begin{cases} z, & \text{if } z \leq y, a(\overline{x}, z) = 0 \text{ and } \forall t < z[a(\overline{x}, t) \neq 0] \\ y + 1, & \text{if } \forall t \leq y[a(\overline{x}, t) \neq 0] \end{cases}$$

We denote $b(\overline{x}, y) = \mu_{z \le y}[a(\overline{x}, z) = 0]$ and we say that *b* is produced from *a* by *limited minimum operation*. The functions $\lambda x_1 \dots x_n x_m (1 \le m \le n), \ \lambda x.x + 1, \ \lambda xy.x \doteq y, \ \lambda xy.xy$ and $\lambda xy.\lfloor \frac{x}{y+1} \rfloor$ will be called *the initial functions*.

Let
$$a \in \mathcal{T}_{m+1}$$
. We define $b \in \mathcal{T}_{m+1}$ by

$$b(\overline{x}, y) = \begin{cases} z, & \text{if } z \le y, a(\overline{x}, z) = 0 \text{ and } \forall t < z[a(\overline{x}, t) \neq 0] \\ y + 1, & \text{if } \forall t \le y[a(\overline{x}, t) \neq 0] \end{cases}$$

We denote $b(\overline{x}, y) = \mu_{z \le y}[a(\overline{x}, z) = 0]$ and we say that *b* is produced from *a* by *limited minimum operation*. The functions $\lambda x_1 \dots x_n x_m (1 \le m \le n), \ \lambda x.x + 1, \ \lambda xy.x \doteq y, \ \lambda xy.xy$ and $\lambda xy.\lfloor \frac{x}{y+1} \rfloor$ will be called *the initial functions*.

Definition

The class \mathcal{M}^2 is the smallest subclass of \mathcal{T} which contains the initial functions and is closed under substitution and limited minimum operation.

Let
$$a \in \mathcal{T}_{m+1}$$
. We define $b \in \mathcal{T}_{m+1}$ by

$$b(\overline{x}, y) = \begin{cases} z, & \text{if } z \le y, a(\overline{x}, z) = 0 \text{ and } \forall t < z[a(\overline{x}, t) \neq 0] \\ y + 1, & \text{if } \forall t \le y[a(\overline{x}, t) \neq 0] \end{cases}$$

We denote $b(\overline{x}, y) = \mu_{z \le y}[a(\overline{x}, z) = 0]$ and we say that *b* is produced from *a* by *limited minimum operation*. The functions $\lambda x_1 \dots x_n x_m (1 \le m \le n), \ \lambda x.x + 1, \ \lambda xy.x \doteq y, \ \lambda xy.xy$ and $\lambda xy.\lfloor \frac{x}{y+1} \rfloor$ will be called *the initial functions*.

Definition

The class \mathcal{M}^2 is the smallest subclass of \mathcal{T} which contains the initial functions and is closed under substitution and limited minimum operation.

It is true that $\mathcal{M}^2 \subseteq \mathcal{E}^2$ and that \mathcal{M}^2 contains exactly the functions in \mathcal{T} , which are bounded by polynomial and Δ_0 -definable.

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = a(\overline{x})$ belongs to \mathbb{RO} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = a(\overline{x})$ belongs to \mathbb{RO} .
- 2. For all n, k such that $1 \le k \le n$, the (n, 1)-operator Φ defined by $\Phi(f_1, \ldots, f_n)(x) = f_k(x)$ belongs to \mathbb{RO} .

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = a(\overline{x})$ belongs to \mathbb{RO} .
- 2. For all n, k such that $1 \le k \le n$, the (n, 1)-operator Φ defined by $\Phi(f_1, \ldots, f_n)(x) = f_k(x)$ belongs to \mathbb{RO} .
- 3. If n, m, k are non-zero, Φ_0 is an (n, k)-operator and Φ_1, \ldots, Φ_k are (n, m)-operators all belonging to \mathbb{RO} , then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = \Phi_0(\overline{f})(\Phi_1(\overline{f})(\overline{x}),\ldots,\Phi_k(\overline{f})(\overline{x}))$$

also belongs to \mathbb{RO} .

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = a(\overline{x})$ belongs to \mathbb{RO} .
- 2. For all n, k such that $1 \le k \le n$, the (n, 1)-operator Φ defined by $\Phi(f_1, \ldots, f_n)(x) = f_k(x)$ belongs to \mathbb{RO} .
- 3. If n, m, k are non-zero, Φ_0 is an (n, k)-operator and Φ_1, \ldots, Φ_k are (n, m)-operators all belonging to \mathbb{RO} , then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = \Phi_0(\overline{f})(\Phi_1(\overline{f})(\overline{x}),\ldots,\Phi_k(\overline{f})(\overline{x}))$$

also belongs to \mathbb{RO} .

4. If *n* is non-zero and Φ_0 is an (n, m+1)-operator which belongs to \mathbb{RO} , then so is the operator Φ defined by $\Phi(\overline{f})(\overline{x}, y) = \mu_{z \le y} [\Phi_0(\overline{f})(\overline{x}, z) = 0].$

Definition

The class \mathbb{RO} of *rudimentary operators* is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = a(\overline{x})$ belongs to \mathbb{RO} .
- 2. For all n, k such that $1 \le k \le n$, the (n, 1)-operator Φ defined by $\Phi(f_1, \ldots, f_n)(x) = f_k(x)$ belongs to \mathbb{RO} .
- 3. If n, m, k are non-zero, Φ_0 is an (n, k)-operator and Φ_1, \ldots, Φ_k are (n, m)-operators all belonging to \mathbb{RO} , then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = \Phi_0(\overline{f})(\Phi_1(\overline{f})(\overline{x}),\ldots,\Phi_k(\overline{f})(\overline{x}))$$

also belongs to \mathbb{RO} .

4. If *n* is non-zero and Φ_0 is an (n, m+1)-operator which belongs to \mathbb{RO} , then so is the operator Φ defined by $\Phi(\overline{f})(\overline{x}, y) = \mu_{z \le y} [\Phi_0(\overline{f})(\overline{x}, z) = 0].$

The class MSO of \mathcal{M}^2 -substitutional operators

Definition (Skordev, [4])

The class MSO of M^2 -substitutional operators is the smallest subclass of O, such that:

The class MSO of \mathcal{M}^2 -substitutional operators

Definition (Skordev, [4])

The class MSO of \mathcal{M}^2 -substitutional operators is the smallest subclass of \mathbb{O} , such that:

1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = p(\overline{x})$ belongs to MSO.

The class MSO of \mathcal{M}^2 -substitutional operators

Definition (Skordev, [4])

The class MSO of \mathcal{M}^2 -substitutional operators is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = p(\overline{x})$ belongs to \mathbb{MSO} .
- 2. For any non-zero m, n and $k \in \{1, ..., n\}$, if Φ_0 is an (n, m)-operator which belongs to MSO, then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = f_k(\Phi_0(\overline{f})(\overline{x}))$$

also belongs to $\mathbb{MSO}.$

The class \mathbb{MSO} of $\mathcal{M}^2\text{-substitutional operators}$

Definition (Skordev, [4])

The class MSO of \mathcal{M}^2 -substitutional operators is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = p(\overline{x})$ belongs to MSO.
- 2. For any non-zero m, n and $k \in \{1, ..., n\}$, if Φ_0 is an (n, m)-operator which belongs to MSO, then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = f_k(\Phi_0(\overline{f})(\overline{x}))$$

also belongs to MSO.

3. For any non-zero m, n, k and $a \in \mathcal{T}_k \cap \mathcal{M}^2$, if Φ_1, \ldots, Φ_k are (n, m)-operators which belong to \mathbb{MSO} , then so is the operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = a(\Phi_1(\overline{f})(\overline{x}), \dots, \Phi_k(\overline{f})(\overline{x})).$$

The class \mathbb{MSO} of $\mathcal{M}^2\text{-substitutional operators}$

Definition (Skordev, [4])

The class MSO of \mathcal{M}^2 -substitutional operators is the smallest subclass of \mathbb{O} , such that:

- 1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\overline{f})(\overline{x}) = p(\overline{x})$ belongs to MSO.
- 2. For any non-zero m, n and $k \in \{1, ..., n\}$, if Φ_0 is an (n, m)-operator which belongs to MSO, then the (n, m)-operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = f_k(\Phi_0(\overline{f})(\overline{x}))$$

also belongs to MSO.

3. For any non-zero m, n, k and $a \in \mathcal{T}_k \cap \mathcal{M}^2$, if Φ_1, \ldots, Φ_k are (n, m)-operators which belong to \mathbb{MSO} , then so is the operator Φ defined by

$$\Phi(\overline{f})(\overline{x}) = a(\Phi_1(\overline{f})(\overline{x}), \dots, \Phi_k(\overline{f})(\overline{x})).$$

\mathbb{MSO} is a proper subclass of \mathbb{RO}

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to \mathbb{MSO} . There exists a natural number v with the property that for all f_1, \ldots, f_n and x_1, \ldots, x_m there exists a finite set A of at most v natural numbers, such that $\Phi(g_1, \ldots, g_n)(\overline{x}) = \Phi(f_1, \ldots, f_n)(\overline{x})$ whenever $g_l(t) = f_l(t)$ for all $l \in \{1, \ldots, n\}$ and $t \in A$.

\mathbb{MSO} is a proper subclass of \mathbb{RO}

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to \mathbb{MSO} . There exists a natural number v with the property that for all f_1, \ldots, f_n and x_1, \ldots, x_m there exists a finite set A of at most v natural numbers, such that $\Phi(g_1, \ldots, g_n)(\overline{x}) = \Phi(f_1, \ldots, f_n)(\overline{x})$ whenever $g_l(t) = f_l(t)$ for all $l \in \{1, \ldots, n\}$ and $t \in A$.

Proposition

For non-zero n, if Φ_0 is a rudimentary (n, m+1)-operator, then so is the operator Φ defined by $\Phi(\overline{f})(\overline{x}, y) = \max_{z \le y} \Phi_0(\overline{f})(\overline{x}, z)$.

\mathbb{MSO} is a proper subclass of \mathbb{RO}

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to \mathbb{MSO} . There exists a natural number v with the property that for all f_1, \ldots, f_n and x_1, \ldots, x_m there exists a finite set A of at most v natural numbers, such that $\Phi(g_1, \ldots, g_n)(\overline{x}) = \Phi(f_1, \ldots, f_n)(\overline{x})$ whenever $g_l(t) = f_l(t)$ for all $l \in \{1, \ldots, n\}$ and $t \in A$.

Proposition

For non-zero n, if Φ_0 is a rudimentary (n, m+1)-operator, then so is the operator Φ defined by $\Phi(\overline{f})(\overline{x}, y) = \max_{z \le y} \Phi_0(\overline{f})(\overline{x}, z)$.

Proposition

 $MSO \subseteq \mathbb{RO} \text{ and } MSO \neq \mathbb{RO}.$

The (1,1)-operator Φ , defined by $\Phi(f)(x) = \max_{y \le x} f(y)$ is rudimentary, but not \mathcal{M}^2 -substitutional.

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the (1, m)-operator Ω uniformizes Φ if for all \overline{x}, f and all $g_1, \ldots, g_n, h_1, \ldots, h_n$ dominated by f, if $g_1(t) = h_1(t), \ldots, g_n(t) = h_n(t)$ for all $t \leq \Omega(f)(\overline{x})$, then $\Phi(\overline{g})(\overline{x}) = \Phi(\overline{h})(\overline{x})$.

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the (1, m)-operator Ω uniformizes Φ if for all \overline{x}, f and all $g_1, \ldots, g_n, h_1, \ldots, h_n$ dominated by f, if $g_1(t) = h_1(t), \ldots, g_n(t) = h_n(t)$ for all $t \leq \Omega(f)(\overline{x})$, then $\Phi(\overline{g})(\overline{x}) = \Phi(\overline{h})(\overline{x})$.

Theorem

Let m, n be non-zero and Φ be an \mathcal{M}^2 -substitutional (n, m)-operator. There exists an \mathcal{M}^2 -substitutional (1, m)-operator Ω which uniformizes Φ .

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the (1, m)-operator Ω uniformizes Φ if for all \overline{x}, f and all $g_1, \ldots, g_n, h_1, \ldots, h_n$ dominated by f, if $g_1(t) = h_1(t), \ldots, g_n(t) = h_n(t)$ for all $t \leq \Omega(f)(\overline{x})$, then $\Phi(\overline{g})(\overline{x}) = \Phi(\overline{h})(\overline{x})$.

Theorem

Let m, n be non-zero and Φ be an \mathcal{M}^2 -substitutional (n, m)-operator. There exists an \mathcal{M}^2 -substitutional (1, m)-operator Ω which uniformizes Φ .

Theorem

Let m, n be non-zero and Φ be a rudimentary (n, m)-operator. There exists a rudimentary (1, m)-operator Ω which uniformizes Φ .

The notion of acceptable pair I

Definition (Skordev, [1])

Let $\mathcal{F} \subseteq \mathcal{T}$ and $\mathbb{OP} \subseteq \mathbb{O}$. The pair $(\mathcal{F}, \mathbb{OP})$ will be called *acceptable*, if the following conditions hold:

- The initial functions belong to \mathcal{F} .
- \mathcal{F} is closed under substitution.
- For non-zero n, the (n,1)-operator Φ defined by Φ(f)(x) = x belongs to OP.
- For non-zero n and $k \in \{1, ..., n\}$, if Φ_0 is an (n, 1)-operator which belongs to \mathbb{OP} , then the (n, 1)-operator Φ defined by $\Phi(\overline{f})(x) = f_k(\Phi_0(\overline{f})(x))$ also belongs to \mathbb{OP} .
- For non-zero n, k and a ∈ T_k ∩ F, if Φ₁,...,Φ_k are (n,1)-operators which belong to OP, then so is the operator Φ defined by

$$\Phi(\overline{f})(x) = a(\Phi_1(\overline{f})(x), \dots, \Phi_k(\overline{f})(x)).$$

The notion of acceptable pair II

Definition (continued)

• For non-zero *n*, if $a_1, \ldots, a_n \in \mathcal{T}_{l+1} \cap \mathcal{F}$ and $\Phi \in \mathbb{OP}$ is an (n, 1)-operator, then the function

 $\lambda s_1 \dots s_l x. \Phi(\lambda t. a_1(s_1, \dots, s_l, t), \dots, \lambda t. a_n(s_1, \dots, s_l, t))(x)$

belongs to \mathcal{F} .

For non-zero n and for every (n, 1)-operator Φ ∈ OP, there exists an (n, 1)-operator Ω ∈ OP which uniformizes Φ.

Theorem

The pairs $(\mathcal{M}^2, \mathbb{MSO})$ and $(\mathcal{M}^2, \mathbb{RO})$ are acceptable.

Uniform computability

A triple $(f, g, h) \in \mathcal{T}_1^3$ names a real number ξ , if for all t

$$\left|\frac{f(t)-g(t)}{h(t)+1}-\xi\right| < \frac{1}{t+1}$$

Definition (Skordev, [1])

Let \mathbb{OP} be a class of operators ($\mathbb{OP} \subseteq \mathbb{O}$). For non-zero *I*, a real function $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^{I}$, will be called *uniformly* \mathbb{OP} -computable, if there exist (3*I*, 1)-operators *F*, *G*, *H* $\in \mathbb{OP}$, such that for all *I*-tuples (ξ_1, \ldots, ξ_I) $\in D$ and *I* triples (f_1, g_1, h_1), ..., (f_I, g_I, h_I) naming ξ_1, \ldots, ξ_I , respectively, the triple

$$(F(f_1, g_1, h_1, \dots, f_l, g_l, h_l), G(f_1, g_1, h_1, \dots, f_l, g_l, h_l), H(f_1, g_1, h_1, \dots, f_l, g_l, h_l))$$

names $\theta(\xi_1,\ldots,\xi_l)$.

Uniform TZ-style computability

Definition (Tent and Ziegler, [5])

Let \mathcal{F} be a subclass of \mathcal{T} . A real function $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{RO}^l, l > 0$, will be called *uniformly TZ-style* \mathcal{F} -computable, if there exist $d \in \mathcal{T}_1 \cap \mathcal{F}$ and $a, b, c \in \mathcal{T}_{3l+1} \cap \mathcal{F}$, such that for all $(\xi_1, \ldots, \xi_l) \in D$ and $x_1, y_1, z_1, \ldots, x_l, y_l, z_l, s$ the inequalities

$$|\xi_k| \le s+1, \left|\frac{x_k-y_k}{z_k+1}-\xi_k\right| < \frac{1}{d(s)+1}$$

for $k \in \{1, \ldots, l\}$, imply that the numbers

$$x = a(x_1, y_1, z_1, \dots, x_l, y_l, z_l, s), y = b(x_1, y_1, z_1, \dots, x_l, y_l, z_l, s),$$

 $z = c(x_1, y_1, z_1, \dots, x_l, y_l, z_l, s)$

satisfy the inequality

$$\left|\frac{x-y}{z+1}-\theta(\xi_1,\ldots,\xi_l)\right| < \frac{1}{s+1}.$$

The main result

Theorem

The following three conditions are equivalent for a real function $\theta: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^{l}, l > 0$.

- 1. θ is uniformly \mathbb{RO} -computable.
- 2. θ is uniformly TZ-style \mathcal{M}^2 -computable.
- 3. θ is uniformly MSO-computable.

Proof.

We apply the characterization theorem of Skordev in [1], which states that for an acceptable pair $(\mathcal{F}, \mathbb{OP})$, θ is uniformly \mathbb{OP} -computable if and only if θ is uniformly TZ-style \mathcal{F} -computable.

References

- Skordev, D., On some computability notions for real functions. (submitted for publication in Computability Journal)
- Skordev, D., Some subrecursive versions of Grzegorczyk's Uniformity Theorem. Math. Logic Quart., 50, 520–524 (2004)
- Skordev, D., Uniform computability of real functions. In: 120 Years Faculty of Mathematics and Informatics, St. Kliment Ohridski University of Sofia, Proceedings, St. Kliment Ohridski Press, Sofia, 179–185 (2011)
- Skordev, D., Weiermann, A., Georgiev, I., \mathcal{M}^2 -computable real numbers. J. Logic and Computation (Advance Access published September 21, 2010), doi:10.1093/logcom/exq050
- Tent, K., Ziegler, M., Computable functions of reals. Münster J. Math., 3, 43–66 (2010)

Thank you for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>