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Introduction

For natural m ≥ 1, the set {a∣a ∶ Nm → N} will be denoted by T m.
The union ⋃∞m≥1 T m will be denoted by T .

For non-zero m and n, the mappings Φ ∶ T n
1 → Tm will be called

(n,m) − operators. An operator is an (n,m)-operator for some
m,n. The set of all operators will be denoted by O.
The aims of this presentation are the following:

1. define the class of functions M2 ⊆ T ;

2. define the classes of operators RO ⊆ O and MSO ⊆ O;

3. show that MSO is a proper subclass of RO;

4. compare the computational power of these classes with
respect to real functions by applying a general
characterization theorem of D. Skordev in [1].
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The class of functions M2

Let a ∈ Tm+1. We define b ∈ Tm+1 by

b(x , y) = { z , if z ≤ y , a(x , z) = 0 and ∀t < z[a(x , t) ≠ 0]
y + 1, if ∀t ≤ y[a(x , t) ≠ 0]

We denote b(x , y) = µz≤y [a(x , z) = 0] and we say that b is
produced from a by limited minimum operation.

The functions λx1 . . . xn.xm(1 ≤ m ≤ n), λx .x + 1, λxy .x � y ,
λxy .xy and λxy .⌊ x

y+1⌋ will be called the initial functions.

Definition
The class M2 is the smallest subclass of T which contains the
inital functions and is closed under substitution and limited
minimum operation.

It is true thatM2 ⊆ E2 and thatM2 contains exactly the functions
in T , which are bounded by polynomial and ∆0-definable.
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The class RO of rudimentary operators

Definition
The class RO of rudimentary operators is the smallest subclass of
O, such that:

1. For any non-zero n,m and m-argument initial function a, the
(n,m)-operator Φ defined by Φ(f )(x) = a(x) belongs to RO.

2. For all n, k such that 1 ≤ k ≤ n, the (n,1)-operator Φ defined
by Φ(f1, . . . , fn)(x) = fk(x) belongs to RO.

3. If n,m, k are non-zero, Φ0 is an (n, k)-operator and
Φ1, . . . , Φk are (n,m)-operators all belonging to RO, then the
(n,m)-operator Φ defined by

Φ(f )(x) = Φ0(f )(Φ1(f )(x), . . . , Φk(f )(x))
also belongs to RO.

4. If n is non-zero and Φ0 is an (n,m + 1)-operator which
belongs to RO, then so is the operator Φ defined by

Φ(f )(x , y) = µz≤y [Φ0(f )(x , z) = 0].
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The class MSO of M2-substitutional operators

Definition (Skordev, [4])

The class MSO of M2-substitutional operators is the smallest
subclass of O, such that:

1. For any non-zero m,n and any m-argument projection
function p, the (n,m)-operator Φ defined by Φ(f )(x) = p(x)
belongs to MSO.

2. For any non-zero m,n and k ∈ {1, . . . ,n}, if Φ0 is an
(n,m)-operator which belongs to MSO, then the
(n,m)-operator Φ defined by

Φ(f )(x) = fk(Φ0(f )(x))
also belongs to MSO.

3. For any non-zero m,n, k and a ∈ Tk ∩M2, if Φ1, . . . , Φk are
(n,m)-operators which belong to MSO, then so is the
operator Φ defined by

Φ(f )(x) = a(Φ1(f )(x), . . . , Φk(f )(x)).
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MSO is a proper subclass of RO

Proposition

Let m,n be non-zero and Φ be an (n,m)-operator belonging to
MSO. There exists a natural number v with the property that for
all f1, . . . , fn and x1, . . . , xm there exists a finite set A of at most v
natural numbers, such that Φ(g1, . . . ,gn)(x) = Φ(f1, . . . , fn)(x)
whenever gl(t) = fl(t) for all l ∈ {1, . . . ,n} and t ∈ A.

Proposition

For non-zero n, if Φ0 is a rudimentary (n,m + 1)-operator, then so
is the operator Φ defined by Φ(f )(x , y) = maxz≤y Φ0(f )(x , z).

Proposition

MSO ⊆ RO and MSO ≠ RO.
The (1,1)-operator Φ, defined by Φ(f )(x) = maxy≤x f (y) is
rudimentary, but not M2-substitutional.
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The Uniformity Theorem

Definition
Let m,n be non-zero and Φ be an (n,m)-operator. We say that
the (1,m)-operator Ω uniformizes Φ if for all x , f and all
g1, . . . ,gn,h1, . . . ,hn dominated by f , if
g1(t) = h1(t), . . . ,gn(t) = hn(t) for all t ≤ Ω(f )(x), then
Φ(g)(x) = Φ(h)(x).

Theorem
Let m,n be non-zero and Φ be an M2-substitutional
(n,m)-operator. There exists an M2-substitutional
(1,m)-operator Ω which uniformizes Φ.

Theorem
Let m,n be non-zero and Φ be a rudimentary (n,m)-operator.
There exists a rudimentary (1,m)-operator Ω which uniformizes Φ.
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The notion of acceptable pair I

Definition (Skordev, [1])

Let F ⊆ T and OP ⊆ O. The pair (F , OP) will be called
acceptable, if the following conditions hold:

▸ The initial functions belong to F .

▸ F is closed under substitution.

▸ For non-zero n, the (n,1)-operator Φ defined by Φ(f )(x) = x
belongs to OP.

▸ For non-zero n and k ∈ {1, . . . ,n}, if Φ0 is an (n,1)-operator
which belongs to OP, then the (n,1)-operator Φ defined by
Φ(f )(x) = fk(Φ0(f )(x)) also belongs to OP.

▸ For non-zero n, k and a ∈ Tk ∩F , if Φ1, . . . , Φk are
(n,1)-operators which belong to OP, then so is the operator
Φ defined by

Φ(f )(x) = a(Φ1(f )(x), . . . , Φk(f )(x)).



The notion of acceptable pair II

Definition (continued)

▸ For non-zero n, if a1, . . . , an ∈ Tl+1 ∩F and Φ ∈ OP is an
(n,1)-operator, then the function

λs1 . . . slx .Φ(λt.a1(s1, . . . , sl , t), . . . , λt.an(s1, . . . , sl , t))(x)

belongs to F .

▸ For non-zero n and for every (n,1)-operator Φ ∈ OP, there
exists an (n,1)-operator Ω ∈ OP which uniformizes Φ.

Theorem
The pairs (M2, MSO) and (M2, RO) are acceptable.



Uniform computability

A triple (f ,g ,h) ∈ T 3
1 names a real number ξ, if for all t

∣ f (t) − g(t)
h(t) + 1

− ξ∣ < 1

t + 1
.

Definition (Skordev, [1])

Let OP be a class of operators (OP ⊆ O). For non-zero l , a real
function θ ∶ D → R, where D ⊆ Rl , will be called uniformly
OP-computable, if there exist (3l ,1)-operators F ,G ,H ∈ OP, such
that for all l-tuples (ξ1, . . . , ξl) ∈ D and l triples
(f1,g1,h1), . . . , (fl ,gl ,hl) naming ξ1, . . . , ξl , respectively, the triple

(F (f1,g1,h1, . . . , fl ,gl ,hl),
G(f1,g1,h1, . . . , fl ,gl ,hl),
H(f1,g1,h1, . . . , fl ,gl ,hl))

names θ(ξ1, . . . , ξl).



Uniform TZ-style computability

Definition (Tent and Ziegler, [5])

Let F be a subclass of T . A real function θ ∶ D → R, where
D ⊆ ROl , l > 0, will be called uniformly TZ-style F-computable, if
there exist d ∈ T1 ∩F and a,b, c ∈ T3l+1 ∩F , such that for all
(ξ1, . . . , ξl) ∈ D and x1, y1, z1, . . . , xl , yl , zl , s the inequalities

∣ξk ∣ ≤ s + 1, ∣xk − yk
zk + 1

− ξk ∣ <
1

d(s) + 1

for k ∈ {1, . . . , l}, imply that the numbers

x = a(x1, y1, z1, . . . , xl , yl , zl , s), y = b(x1, y1, z1, . . . , xl , yl , zl , s),

z = c(x1, y1, z1, . . . , xl , yl , zl , s)

satisfy the inequality

∣x − y

z + 1
− θ(ξ1, . . . , ξl)∣ <

1

s + 1
.



The main result

Theorem
The following three conditions are equivalent for a real function
θ ∶ D → R, where D ⊆ Rl , l > 0.

1. θ is uniformly RO-computable.

2. θ is uniformly TZ-style M2-computable.

3. θ is uniformly MSO-computable.

Proof.
We apply the characterization theorem of Skordev in [1], which
states that for an acceptable pair (F ,OP),
θ is uniformly OP-computable if and only if
θ is uniformly TZ-style F-computable.
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