Computing Real Functions with Rudimentary Operators

Ivan Georgiev ${ }^{1}$

Prof. Assen Zlatarov University, Burgas, Bulgaria

Computability and Complexity in Analysis 2012

$$
25 \text { June } 2012
$$

${ }^{1}$ This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0022/19.03.2012

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.
For non-zero m and n, the mappings $\Phi: \mathcal{T}_{1}^{n} \rightarrow \mathcal{T}_{m}$ will be called (n, m)-operators. An operator is an (n, m)-operator for some m, n. The set of all operators will be denoted by \mathbb{O}.

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.
For non-zero m and n, the mappings $\Phi: \mathcal{T}_{1}^{n} \rightarrow \mathcal{T}_{m}$ will be called (n, m)-operators. An operator is an (n, m)-operator for some m, n. The set of all operators will be denoted by \mathbb{O}.
The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^{2} \subseteq \mathcal{T}$;

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.
For non-zero m and n, the mappings $\Phi: \mathcal{T}_{1}^{n} \rightarrow \mathcal{T}_{m}$ will be called (n, m)-operators. An operator is an (n, m)-operator for some m, n. The set of all operators will be denoted by \mathbb{O}.
The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^{2} \subseteq \mathcal{T}$;
2. define the classes of operators $\mathbb{R O} \subseteq \mathbb{O}$ and $\mathbb{M S O} \subseteq \mathbb{O}$;

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.
For non-zero m and n, the mappings $\Phi: \mathcal{T}_{1}^{n} \rightarrow \mathcal{T}_{m}$ will be called (n, m)-operators. An operator is an (n, m)-operator for some m, n. The set of all operators will be denoted by \mathbb{O}.
The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^{2} \subseteq \mathcal{T}$;
2. define the classes of operators $\mathbb{R O} \subseteq \mathbb{O}$ and $\mathbb{M S O} \subseteq \mathbb{O}$;
3. show that $\mathbb{M S O}$ is a proper subclass of $\mathbb{R} \mathbb{O}$;

Introduction

For natural $m \geq 1$, the set $\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ will be denoted by \mathcal{T}_{m}. The union $\cup_{m \geq 1}^{\infty} \mathcal{T}^{m}$ will be denoted by \mathcal{T}.
For non-zero m and n, the mappings $\Phi: \mathcal{T}_{1}^{n} \rightarrow \mathcal{T}_{m}$ will be called (n, m)-operators. An operator is an (n, m)-operator for some m, n. The set of all operators will be denoted by \mathbb{O}.
The aims of this presentation are the following:

1. define the class of functions $\mathcal{M}^{2} \subseteq \mathcal{T}$;
2. define the classes of operators $\mathbb{R O} \subseteq \mathbb{O}$ and $\mathbb{M S O} \subseteq \mathbb{O}$;
3. show that $\mathbb{M S O}$ is a proper subclass of $\mathbb{R} \mathbb{O}$;
4. compare the computational power of these classes with respect to real functions by applying a general characterization theorem of D. Skordev in [1].

The class of functions \mathcal{M}^{2}

Let $a \in \mathcal{T}_{m+1}$. We define $b \in \mathcal{T}_{m+1}$ by

$$
b(\bar{x}, y)=\left\{\begin{aligned}
z, & \text { if } z \leq y, a(\bar{x}, z)=0 \text { and } \forall t<z[a(\bar{x}, t) \neq 0] \\
y+1, & \text { if } \forall t \leq y[a(\bar{x}, t) \neq 0]
\end{aligned}\right.
$$

We denote $b(\bar{x}, y)=\mu_{z \leq y}[a(\bar{x}, z)=0]$ and we say that b is produced from a by limited minimum operation.

The class of functions \mathcal{M}^{2}

Let $a \in \mathcal{T}_{m+1}$. We define $b \in \mathcal{T}_{m+1}$ by

$$
b(\bar{x}, y)=\left\{\begin{aligned}
z, & \text { if } z \leq y, a(\bar{x}, z)=0 \text { and } \forall t<z[a(\bar{x}, t) \neq 0] \\
y+1, & \text { if } \forall t \leq y[a(\bar{x}, t) \neq 0]
\end{aligned}\right.
$$

We denote $b(\bar{x}, y)=\mu_{z \leq y}[a(\bar{x}, z)=0]$ and we say that b is produced from a by limited minimum operation.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-} y$, $\lambda x y . x y$ and $\lambda x y \cdot\left\lfloor\frac{x}{y+1}\right\rfloor$ will be called the initial functions.

The class of functions \mathcal{M}^{2}

Let $a \in \mathcal{T}_{m+1}$. We define $b \in \mathcal{T}_{m+1}$ by

$$
b(\bar{x}, y)=\left\{\begin{aligned}
z, & \text { if } z \leq y, a(\bar{x}, z)=0 \text { and } \forall t<z[a(\bar{x}, t) \neq 0] \\
y+1, & \text { if } \forall t \leq y[a(\bar{x}, t) \neq 0]
\end{aligned}\right.
$$

We denote $b(\bar{x}, y)=\mu_{z \leq y}[a(\bar{x}, z)=0]$ and we say that b is produced from a by limited minimum operation.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-} y$, $\lambda x y . x y$ and $\lambda x y \cdot\left\lfloor\frac{x}{y+1}\right\rfloor$ will be called the initial functions.

Definition

The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T} which contains the inital functions and is closed under substitution and limited minimum operation.

The class of functions \mathcal{M}^{2}

Let $a \in \mathcal{T}_{m+1}$. We define $b \in \mathcal{T}_{m+1}$ by

$$
b(\bar{x}, y)=\left\{\begin{aligned}
z, & \text { if } z \leq y, a(\bar{x}, z)=0 \text { and } \forall t<z[a(\bar{x}, t) \neq 0] \\
y+1, & \text { if } \forall t \leq y[a(\bar{x}, t) \neq 0]
\end{aligned}\right.
$$

We denote $b(\bar{x}, y)=\mu_{z \leq y}[a(\bar{x}, z)=0]$ and we say that b is produced from a by limited minimum operation.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-} y$, $\lambda x y . x y$ and $\lambda x y \cdot\left\lfloor\frac{x}{y+1}\right\rfloor$ will be called the initial functions.

Definition

The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T} which contains the inital functions and is closed under substitution and limited minimum operation.
It is true that $\mathcal{M}^{2} \subseteq \mathcal{E}^{2}$ and that \mathcal{M}^{2} contains exactly the functions in \mathcal{T}, which are bounded by polynomial and Δ_{0}-definable.

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition
The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=a(\bar{x})$ belongs to $\mathbb{R} \mathbb{O}$.

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=a(\bar{x})$ belongs to $\mathbb{R} \mathbb{O}$.
2. For all n, k such that $1 \leq k \leq n$, the ($n, 1$)-operator Φ defined by $\Phi\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to $\mathbb{R} \mathbb{O}$.

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=a(\bar{x})$ belongs to $\mathbb{R} \mathbb{O}$.
2. For all n, k such that $1 \leq k \leq n$, the ($n, 1$)-operator Φ defined by $\Phi\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to $\mathbb{R} \mathbb{O}$.
3. If n, m, k are non-zero, Φ_{0} is an (n, k)-operator and $\Phi_{1}, \ldots, \Phi_{k}$ are (n, m)-operators all belonging to $\mathbb{R} \mathbb{O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=\Phi_{0}(\bar{f})\left(\Phi_{1}(\bar{f})(\bar{x}), \ldots, \Phi_{k}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{R} \mathbb{O}$.

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=a(\bar{x})$ belongs to $\mathbb{R} \mathbb{O}$.
2. For all n, k such that $1 \leq k \leq n$, the ($n, 1$)-operator Φ defined by $\Phi\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to $\mathbb{R} \mathbb{O}$.
3. If n, m, k are non-zero, Φ_{0} is an (n, k)-operator and $\Phi_{1}, \ldots, \Phi_{k}$ are (n, m)-operators all belonging to $\mathbb{R} \mathbb{O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=\Phi_{0}(\bar{f})\left(\Phi_{1}(\bar{f})(\bar{x}), \ldots, \Phi_{k}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{R} \mathbb{D}$.
4. If n is non-zero and Φ_{0} is an ($n, m+1$)-operator which belongs to $\mathbb{R O}$, then so is the operator Φ defined by

$$
\Phi(\bar{f})(\bar{x}, y)=\mu_{z \leq y}\left[\Phi_{0}(\bar{f})(\bar{x}, z)=0\right] .
$$

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators

Definition

The class $\mathbb{R} \mathbb{O}$ of rudimentary operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero n, m and m-argument initial function a, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=a(\bar{x})$ belongs to $\mathbb{R} \mathbb{O}$.
2. For all n, k such that $1 \leq k \leq n$, the ($n, 1$)-operator Φ defined by $\Phi\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to $\mathbb{R} \mathbb{O}$.
3. If n, m, k are non-zero, Φ_{0} is an (n, k)-operator and $\Phi_{1}, \ldots, \Phi_{k}$ are (n, m)-operators all belonging to $\mathbb{R} \mathbb{O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=\Phi_{0}(\bar{f})\left(\Phi_{1}(\bar{f})(\bar{x}), \ldots, \Phi_{k}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{R} \mathbb{D}$.
4. If n is non-zero and Φ_{0} is an ($n, m+1$)-operator which belongs to $\mathbb{R O}$, then so is the operator Φ defined by

$$
\Phi(\bar{f})(\bar{x}, y)=\mu_{z \leq y}\left[\Phi_{0}(\bar{f})(\bar{x}, z)=0\right] .
$$

The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators

Definition (Skordev, [4])
The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators is the smallest subclass of \mathbb{O}, such that:

The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators

Definition (Skordev, [4])
The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=p(\bar{x})$ belongs to $\mathbb{M S O}$.

The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators

Definition (Skordev, [4])
The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=p(\bar{x})$ belongs to $\mathbb{M S O}$.
2. For any non-zero m, n and $k \in\{1, \ldots, n\}$, if Φ_{0} is an (n, m)-operator which belongs to $\mathbb{M S O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=f_{k}\left(\Phi_{0}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{M S O}$.

The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators

Definition (Skordev, [4])
The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=p(\bar{x})$ belongs to $\mathbb{M S O}$.
2. For any non-zero m, n and $k \in\{1, \ldots, n\}$, if Φ_{0} is an (n, m)-operator which belongs to $\mathbb{M S O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=f_{k}\left(\Phi_{0}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{M S O}$.
3. For any non-zero m, n, k and $a \in \mathcal{T}_{k} \cap \mathcal{M}^{2}$, if $\Phi_{1}, \ldots, \Phi_{k}$ are (n, m)-operators which belong to $\mathbb{M S O}$, then so is the operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=a\left(\Phi_{1}(\bar{f})(\bar{x}), \ldots, \Phi_{k}(\bar{f})(\bar{x})\right) .
$$

The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators

Definition (Skordev, [4])
The class $\mathbb{M S O}$ of \mathcal{M}^{2}-substitutional operators is the smallest subclass of \mathbb{O}, such that:

1. For any non-zero m, n and any m-argument projection function p, the (n, m)-operator Φ defined by $\Phi(\bar{f})(\bar{x})=p(\bar{x})$ belongs to $\mathbb{M S O}$.
2. For any non-zero m, n and $k \in\{1, \ldots, n\}$, if Φ_{0} is an (n, m)-operator which belongs to $\mathbb{M S O}$, then the (n, m)-operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=f_{k}\left(\Phi_{0}(\bar{f})(\bar{x})\right)
$$

also belongs to $\mathbb{M S O}$.
3. For any non-zero m, n, k and $a \in \mathcal{T}_{k} \cap \mathcal{M}^{2}$, if $\Phi_{1}, \ldots, \Phi_{k}$ are (n, m)-operators which belong to $\mathbb{M S O}$, then so is the operator Φ defined by

$$
\Phi(\bar{f})(\bar{x})=a\left(\Phi_{1}(\bar{f})(\bar{x}), \ldots, \Phi_{k}(\bar{f})(\bar{x})\right) .
$$

$\mathbb{M S O}$ is a proper subclass of $\mathbb{R} \mathbb{O}$

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to $\mathbb{M S O}$. There exists a natural number v with the property that for all f_{1}, \ldots, f_{n} and x_{1}, \ldots, x_{m} there exists a finite set A of at most v natural numbers, such that $\Phi\left(g_{1}, \ldots, g_{n}\right)(\bar{x})=\Phi\left(f_{1}, \ldots, f_{n}\right)(\bar{x})$ whenever $g_{l}(t)=f_{l}(t)$ for all $I \in\{1, \ldots, n\}$ and $t \in A$.

$\mathbb{M S O}$ is a proper subclass of $\mathbb{R} \mathbb{O}$

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to MSO. There exists a natural number v with the property that for all f_{1}, \ldots, f_{n} and x_{1}, \ldots, x_{m} there exists a finite set A of at most v natural numbers, such that $\Phi\left(g_{1}, \ldots, g_{n}\right)(\bar{x})=\Phi\left(f_{1}, \ldots, f_{n}\right)(\bar{x})$ whenever $g_{l}(t)=f_{l}(t)$ for all $I \in\{1, \ldots, n\}$ and $t \in A$.

Proposition

For non-zero n, if Φ_{0} is a rudimentary $(n, m+1)$-operator, then so is the operator Φ defined by $\Phi(\bar{f})(\bar{x}, y)=\max _{z \leq y} \Phi_{0}(\bar{f})(\bar{x}, z)$.

$\mathbb{M S O}$ is a proper subclass of $\mathbb{R} \mathbb{O}$

Proposition

Let m, n be non-zero and Φ be an (n, m)-operator belonging to MSO. There exists a natural number v with the property that for all f_{1}, \ldots, f_{n} and x_{1}, \ldots, x_{m} there exists a finite set A of at most v natural numbers, such that $\Phi\left(g_{1}, \ldots, g_{n}\right)(\bar{x})=\Phi\left(f_{1}, \ldots, f_{n}\right)(\bar{x})$ whenever $g_{l}(t)=f_{l}(t)$ for all $I \in\{1, \ldots, n\}$ and $t \in A$.

Proposition

For non-zero n, if Φ_{0} is a rudimentary $(n, m+1)$-operator, then so is the operator Φ defined by $\Phi(\bar{f})(\bar{x}, y)=\max _{z \leq y} \Phi_{0}(\bar{f})(\bar{x}, z)$.

Proposition

$\mathbb{M S O} \subseteq \mathbb{R O}$ and $\mathbb{M S O} \neq \mathbb{R O}$.
The $(1,1)$-operator Φ, defined by $\Phi(f)(x)=\max _{y \leq x} f(y)$ is rudimentary, but not \mathcal{M}^{2}-substitutional.

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the ($1, m$)-operator Ω uniformizes Φ if for all \bar{x}, f and all $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}$ dominated by f, if $g_{1}(t)=h_{1}(t), \ldots, g_{n}(t)=h_{n}(t)$ for all $t \leq \Omega(f)(\bar{x})$, then $\Phi(\bar{g})(\bar{x})=\Phi(\bar{h})(\bar{x})$.

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the ($1, m$)-operator Ω uniformizes Φ if for all \bar{x}, f and all $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}$ dominated by f, if $g_{1}(t)=h_{1}(t), \ldots, g_{n}(t)=h_{n}(t)$ for all $t \leq \Omega(f)(\bar{x})$, then $\Phi(\bar{g})(\bar{x})=\Phi(\bar{h})(\bar{x})$.

Theorem
Let m, n be non-zero and Φ be an \mathcal{M}^{2}-substitutional (n, m)-operator. There exists an \mathcal{M}^{2}-substitutional
$(1, m)$-operator Ω which uniformizes Φ.

The Uniformity Theorem

Definition

Let m, n be non-zero and Φ be an (n, m)-operator. We say that the ($1, m$)-operator Ω uniformizes Φ if for all \bar{x}, f and all $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}$ dominated by f, if $g_{1}(t)=h_{1}(t), \ldots, g_{n}(t)=h_{n}(t)$ for all $t \leq \Omega(f)(\bar{x})$, then $\Phi(\bar{g})(\bar{x})=\Phi(\bar{h})(\bar{x})$.

Theorem
Let m, n be non-zero and Φ be an \mathcal{M}^{2}-substitutional (n, m)-operator. There exists an \mathcal{M}^{2}-substitutional
($1, m$)-operator Ω which uniformizes Φ.
Theorem
Let m, n be non-zero and Φ be a rudimentary (n, m)-operator. There exists a rudimentary $(1, m)$-operator Ω which uniformizes Φ.

The notion of acceptable pair I

Definition (Skordev, [1])

Let $\mathcal{F} \subseteq \mathcal{T}$ and $\mathbb{O P} \subseteq \mathbb{O}$. The pair $(\mathcal{F}, \mathbb{O P})$ will be called acceptable, if the following conditions hold:

- The initial functions belong to \mathcal{F}.
- \mathcal{F} is closed under substitution.
- For non-zero n, the $(n, 1)$-operator Φ defined by $\Phi(\bar{f})(x)=x$ belongs to $\mathbb{O P}$.
- For non-zero n and $k \in\{1, \ldots, n\}$, if Φ_{0} is an ($n, 1$)-operator which belongs to $\mathbb{O P}$, then the $(n, 1)$-operator Φ defined by $\Phi(\bar{f})(x)=f_{k}\left(\Phi_{0}(\bar{f})(x)\right)$ also belongs to $\mathbb{O P}$.
- For non-zero n, k and $a \in \mathcal{T}_{k} \cap \mathcal{F}$, if $\Phi_{1}, \ldots, \Phi_{k}$ are $(n, 1)$-operators which belong to $\mathbb{O P}$, then so is the operator Φ defined by

$$
\Phi(\bar{f})(x)=a\left(\Phi_{1}(\bar{f})(x), \ldots, \Phi_{k}(\bar{f})(x)\right)
$$

The notion of acceptable pair II

Definition (continued)

- For non-zero n, if $a_{1}, \ldots, a_{n} \in \mathcal{T}_{1+1} \cap \mathcal{F}$ and $\Phi \in \mathbb{O P}$ is an $(n, 1)$-operator, then the function

$$
\lambda s_{1} \ldots s_{/} X . \Phi\left(\lambda t . a_{1}\left(s_{1}, \ldots, s_{l}, t\right), \ldots, \lambda t . a_{n}\left(s_{1}, \ldots, s_{l}, t\right)\right)(x)
$$

belongs to \mathcal{F}.

- For non-zero n and for every $(n, 1)$-operator $\Phi \in \mathbb{O P}$, there exists an $(n, 1)$-operator $\Omega \in \mathbb{O P}$ which uniformizes Φ.

Theorem
The pairs $\left(\mathcal{M}^{2}, \mathbb{M S O}\right)$ and $\left(\mathcal{M}^{2}, \mathbb{R O}\right)$ are acceptable.

Uniform computability

A triple $(f, g, h) \in \mathcal{T}_{1}^{3}$ names a real number ξ, if for all t

$$
\left|\frac{f(t)-g(t)}{h(t)+1}-\xi\right|<\frac{1}{t+1} .
$$

Definition (Skordev, [1])
Let $\mathbb{O P}$ be a class of operators $(\mathbb{O P} \subseteq \mathbb{O})$. For non-zero I, a real function $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{I}$, will be called uniformly
$\mathbb{O P}$-computable, if there exist $(3 /, 1)$-operators $F, G, H \in \mathbb{O P}$, such that for all I-tuples $\left(\xi_{1}, \ldots, \xi_{l}\right) \in D$ and I triples
$\left(f_{1}, g_{1}, h_{1}\right), \ldots,\left(f_{l}, g_{l}, h_{l}\right)$ naming ξ_{1}, \ldots, ξ_{l}, respectively, the triple

$$
\begin{aligned}
& \left(F\left(f_{1}, g_{1}, h_{1}, \ldots, f_{l}, g_{l}, h_{l}\right),\right. \\
& G\left(f_{1}, g_{1}, h_{1}, \ldots, f_{l}, g_{l}, h_{l}\right) \\
& \left.H\left(f_{1}, g_{1}, h_{1}, \ldots, f_{l}, g_{l}, h_{l}\right)\right)
\end{aligned}
$$

names $\theta\left(\xi_{1}, \ldots, \xi_{l}\right)$.

Uniform TZ-style computability

Definition (Tent and Ziegler, [5])
Let \mathcal{F} be a subclass of \mathcal{T}. A real function $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R O}^{\prime}, l>0$, will be called uniformly $T Z$-style \mathcal{F}-computable, if there exist $d \in \mathcal{T}_{1} \cap \mathcal{F}$ and $a, b, c \in \mathcal{T}_{3 /+1} \cap \mathcal{F}$, such that for all $\left(\xi_{1}, \ldots, \xi_{l}\right) \in D$ and $x_{1}, y_{1}, z_{1}, \ldots, x_{l}, y_{l}, z_{l}, s$ the inequalities

$$
\left|\xi_{k}\right| \leq s+1,\left|\frac{x_{k}-y_{k}}{z_{k}+1}-\xi_{k}\right|<\frac{1}{d(s)+1}
$$

for $k \in\{1, \ldots, I\}$, imply that the numbers

$$
\begin{gathered}
x=a\left(x_{1}, y_{1}, z_{1}, \ldots, x_{l}, y_{l}, z_{l}, s\right), y=b\left(x_{1}, y_{1}, z_{1}, \ldots, x_{l}, y_{l}, z_{l}, s\right) \\
z=c\left(x_{1}, y_{1}, z_{1}, \ldots, x_{l}, y_{l}, z_{l}, s\right)
\end{gathered}
$$

satisfy the inequality

$$
\left|\frac{x-y}{z+1}-\theta\left(\xi_{1}, \ldots, \xi_{1}\right)\right|<\frac{1}{s+1}
$$

The main result

Theorem
The following three conditions are equivalent for a real function $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{\prime}, l>0$.

1. θ is uniformly $\mathbb{R} \mathbb{O}$-computable.
2. θ is uniformly $T Z$-style \mathcal{M}^{2}-computable.
3. θ is uniformly $\mathbb{M S O}$-computable.

Proof.

We apply the characterization theorem of Skordev in [1], which states that for an acceptable pair $(\mathcal{F}, \mathbb{O P})$,
θ is uniformly $\mathbb{O P}$-computable if and only if
θ is uniformly TZ-style \mathcal{F}-computable.

References

囯 Skordev，D．，On some computability notions for real functions． （submitted for publication in Computability Journal）
（ Skordev，D．，Some subrecursive versions of Grzegorczyk＇s Uniformity Theorem．Math．Logic Quart．，50，520－524（2004）
國 Skordev，D．，Uniform computability of real functions．In： 120 Years Faculty of Mathematics and Informatics，St．Kliment Ohridski University of Sofia，Proceedings，St．Kliment Ohridski Press，Sofia，179－185（2011）

围 Skordev，D．，Weiermann，A．，Georgiev，I．， \mathcal{M}^{2}－computable real numbers．J．Logic and Computation（Advance Access published September 21，2010），doi：10．1093／logcom／exq050

雷 Tent，K．，Ziegler，M．，Computable functions of reals．Münster J．Math．，3，43－66（2010）

Thank you for your attention!

